期刊文献+

新型高氮含能叠氮化物的分子设计与理论研究(英文) 被引量:2

Molecular Design and Theoretical Study on Novel High-nitrogen Energetic Azido Compounds
下载PDF
导出
摘要 根据CH4、BH3、NH3以及C2H4的结构特点,设计了7种新型叠氮类高氮含能化合物C(N3)4、B(N3)3和N(N3)3;CC(N3)4、BN(N3)4、NN(N3)4和CC(N3)6,在B3PW91/6-311+G(d)水平下对上述化合物进行了构型优化、振动频率以及键级分析,计算结果表明,所有化合物均无虚频,为势能面上的稳定结构,理论计算的红外结果与现有的实验结果十分相符。键级结果表明中心原子形成的键相对较弱,为爆炸时可能的首发键。计算得到了目标化合物的生成热、密度、爆速和爆压。计算得到几乎所有分子的爆速和爆压都超过了HMX,在含能材料领域具有潜在的应用前景。 Seven high-nitrogen energetic compounds were devised: C(N3)4, B(N3)3, N(N3)3; CC(N3)4, BN(N3)4, NN(N3)4 and CC(N3)6, which are structurally similar to CH4, BH3, NH3 and C2H4. The molecular geometries, IR spectra, bond order and frontier orbital energies of these compounds were obtained at B3PW91/6-311+G(d) level of theory. The calculated results show that they were stable on the related potential energy surface. The theoretical spectrum agreed well with the experimental value. According to the results of bond orders, we could predict that the possible primary decomposition reactions of the title compounds may be the elimination of azido group or the center bond breaking. The heat of formation, density and detonation performance of the above compounds were obtained. These results indicate that almost all titled compounds have potential applications in the field of high energy density materials.
出处 《含能材料》 EI CAS CSCD 北大核心 2012年第5期528-533,共6页 Chinese Journal of Energetic Materials
基金 State Key Laboratory of Science and Technology(No QNKT11-06 & YBKT10-03) the Program for New Century Excellent Talents in University (No NCET-09-0051)
关键词 物理化学 叠氮化合物 高氮化合物 生成热 爆速 爆压 physical chemistry azidecompound high nitrogen compound heat of formation detonation velocity detonation pressure
  • 相关文献

参考文献1

二级参考文献6

共引文献17

同被引文献14

  • 1Grundmann Christoph J, Wilhelm J S. Iso-cyanogen tetraazide and its preparation: US,2990412[P]. 1961.
  • 2Klapotke T M, Martin F A, Stierstorfer J.C2N,4: An energetic and highly sensitive binaryazidotetrazole[J]. Angew Chem Int Ed, 2011,50:4227-4 229.
  • 3Becke A D. Density-functional thermochemistry.III. The role of exact exchange[J]. Journal ofChemistry Physics, 1993, 98(7): 5 648 — 5 652.
  • 4Nicolaides A,Radom L. An evaluation of theperformance of G2, G2(MP2) and G2(MP2,SVP)theories for heats of formation and heats of reac-tion in the case of “large” hydrocarbons[J]. Mo-lecular Physics, 1996,88(3): 759-765.
  • 5Curtiss L A, Raghavachari K, Redfern P C, et al.Assement of Gaussian-2 and density functionaltheories for the computation of enthalpies offormation[J]. J Chem Phys, 1997, 106(3): 1 063.
  • 6Byrd E F C, Rice B M. Improved prediction ofheats of formation of energetic material usingquantum chemical methods[J]. J Phys Chem A,2006,110(3): 1 005-1 013.
  • 7Rice B M, Pai S V,Hare J. Predicting heats offormation of energetic materials using quantumchemical calculation[J]. Comb Flame, 1999,118(3): 445-458.
  • 8Ochterski J W, Petersson G A, Montgomery J A.A complete basis set model chemistry. V. Exten-sion to six or more heavy atoms[J]. J Chem Phys,1996, 104: 2 598.
  • 9Montgomery J A, Frisch M J, Ochterski J W,et al.A complete basis set model chemistry. VII. Use ofthe minimum population localization method[J]. JChem Phys, 2000,112: 6 532.
  • 10Kamlet M J, Jacobs S J. Chemistry of detonation.I. A simple method for calculating detonationproperties of CHNO explosives[J]. J Chem Phys,1968, 48(1): 25-35.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部