期刊文献+

交换半环上严格上三角矩阵半环的自同构

Automorphisms of Strictly Upper Triangular Matrix over Commutative Semirings
下载PDF
导出
摘要 利用矩阵的一些性质,采用反证法、数学归纳法等方法得出了半环N(nR)上的自同构的一些结论,即(1)当n=2时,存在一个保持加法的映射g∶R→R,使得Φ(rE12)=g(r)E12,r∈R.(2)当n=3时,存在半环Nn(R)的对角自同构θD,半环自同构ξg,中心自同构τf,使得Φ=θDξgτf.(3)当n≥4时,存在半环N(nR)的对角自同构θD,内自同构φX,半环自同构ξg,中心自同构τf,使得Φ=θDφXξgτf. In this paper, by using some properties of matrix, the reduction to absurdity, mathematical induction meth- od, we obtaint some characterizations of the automorphism Ф of Nn ( R ). ( 1 ) when n=2, for any r ∈ R, Ф (rE12) =g (r) E12, where there is a map of keeping the adsition:R →R; (2)when n=3, Ф=θD·ξg·τf ;(3)when n≥4,Ф=θDφXξgτf, where θD is a diagonal automorphism of N.(R), ξg is an automorphism of Nn(R),τf is a central automorphism of Nn(R), φX is an inner automorphism of Nn(R).
作者 黄惠玲
出处 《海南师范大学学报(自然科学版)》 CAS 2012年第3期244-248,共5页 Journal of Hainan Normal University(Natural Science)
基金 福建省自然科学基金资助项目(2008J0186)
关键词 半环 矩阵半环 自同构 Semiring matrix Semiring automorphism
  • 相关文献

参考文献4

  • 1谭作文,杨玉月,曹佑安.交换环上严格上三角矩阵环的自同构[J].湘潭大学自然科学学报,2002,24(2):1-5. 被引量:2
  • 2Jacobson N. Basic Algebra I [M]. New York: W H Free- man and Company,1985.
  • 3Golan J S. Semirings and their Applicatiom[M]. London: Kluwer Academic Publisher,1999.
  • 4陈陪慈.半环理论与语言和自动机[M].南昌:江西高校出版社,1993.

二级参考文献14

  • 1[1]Barker G P.Automorphisms of triangular matrices over graphs[J].Linear Algebra Appl,1992,160:63-74.
  • 2[2]Barker G P,Kezlan T P.Automorphisms of algebras of upper triangular matrices[J].Arch Math (Basel),1990,55:38-43.
  • 3[3]Barker G P.Automorphism groups of algebra of triangular matrices[J].Linear Algebra Appl,1989,121:207-215.
  • 4[4]Barker G P,Kezlan T P.The automorphism group of a matrix algebra[J].in Current Trends in Matrix Theory.Preceedings, Auburn, 1986: 33-39.
  • 5[5]Cao You'an.Automorphisms of Certain Lie algebras of upper triangular matrices over a commutative ring[J].J Algebra,1997,189: 506-513.
  • 6[6]Cao You'an.Automorphisms of Lie algebra of strictly uppertriangular matrices over certain commutative rings[J].Linear Algebra Appl,2001,329:175-187.
  • 7[7]Cao You'an, Wang Jingtong.A note of algebra automorphisms of strictly upper trian-gular matrices over commutative rings[J].Linear Algebra Appl,2000,311:187-193.
  • 8[8]Dokovc D Z.Automorphisms of the Lie algebra of upper triangular matrices over a connected commutative ring[J].J Algebra,1994,170: 101-110.
  • 9[9]Coelho S P.The automorphism group of a structural matrix algebra[J].Linear Algebra Appl,1993,195:35-58.
  • 10[10]Coelho S P.Automorphism group of certain structural matrix rings[J].Communications in Algebra,1994,22:5 567-5 586.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部