期刊文献+

非线性分数阶微分方程四点非局部边值问题

On 4 Problems of Nonlocal Boundary Value of Nonlinear Differential Equations of Fractional Order
下载PDF
导出
摘要 从两点到三点到m点再到无穷多点,对常微分方程边值问题的研究最早始于牛顿和莱布尼茨建立微积分的最初阶段。这些常微分方程多点边值问题也常常被称为常微分方程非局部问题。讨论阶数为q∈(1,2)的非线性分数阶微分方程四点非局部边值问题,借助Ascoli-Arzela定理,首先利用压缩映射原理得到解的唯一性,其次利用Krasnoselskii不动点定理得到四点边值问题至少存在一个解,并且举例验证。 From two to three, and then to the infinite points, researches of BVPs( boundary value problems) of ODE ( ordinary differential equation) were first started in the initial stages of the calculus set up by Newton and Leibniz. These boundary value problems of differential equations are also often referred to as non - local ordinary differential equations problems. In this paper, the existence and uniqueness of solutions 'to a four - point non - lo- cal boundary value problems of nonlinear differential equations of fractional order q∈ (1,2) is analyzed, with the help of the Ascoli - Arzela theorem, and the use of the uniqueness of the contracting mapping principle solution, followed by Krasnoselskii fixed point theorem for four - point boundary value problem, is at least one solution, and example is provided to illustrate the theory.
作者 罗华 胡卫敏
出处 《绵阳师范学院学报》 2012年第8期5-10,共6页 Journal of Mianyang Teachers' College
基金 新疆普通高校重点培育学科基金资助项目(XJZDXK2011004)
关键词 四点边值问题 分数阶微分方程 CAPUTO分数阶导数 压缩映射原理 不动点定理 Four- point boundary value problem fractional differential equations Caputo fractional deriva-tive contracting mapping principle fixed point theorem
  • 相关文献

参考文献11

  • 1Ahmad Bashir, Sivasundaram S. On four - point non/oeal boundary values problems of nonlinear integro - differential equations of fractional order [ J . Appl. Math. Comput,217 (2010) :480 - 487.
  • 2ZhouW - X, ChuY - D. Existence of solutions for fractional differential equations with muli - point boundary conditions [ J ]. Commun Nonlinear Sci Number Simulat, 17 ( 2012 ) : 1142 - 1148.
  • 3尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1981.252.
  • 4葛渭高.非线性常微分方程边值问题[M].北京:科学出版社.2000:39-67.
  • 5郭大钧,孙经先,刘兆理.非线性微分方程泛函方法[M].济南:山东科学技术出版社.2005:190-197.
  • 6Ahmad Bashir. Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations [ J ]. Applied Mathematics Letters ,2010,23:390 - 394.
  • 7A. Babakhani and Varsha Daftardar - Gejji. Existence of Positive Solutions for N - term Non - autonomous Fractional Differen- tial Equations[ J]. Positivity,2005,9 : 193 - 206.
  • 8ZhaoJun - F, GengF - J, Zhao Jian - F. Positive solution to a new kind Sturm - Liouville - like fottr - point boundary conditions [ J ]. Appl. Math. Comput,2010,217:811 - 819.
  • 9Zhong W, Lin W. Nonlocal and multiple - point boundary value problem for fractional differential equations [ J ]. Comput Math App,2010,159(3) :1345 - 1351.
  • 10Bai Z - B, Lu H - S. Positive solutions for boundary value problem of nonlinear fractional differential equation[J. Math Anal Appl,2005,311 (2) :495 -505.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部