期刊文献+

灰度和纹理特征组合的SAR影像SVM分类 被引量:20

SAR Image Classification Based on SVM with Fusion of Gray Scale and Texture Features
下载PDF
导出
摘要 针对利用单一特征进行分类的效果不理想、普适性不强等问题,提出了一种灰度和不同纹理特征组合的支持向量机(support vector machine,SVM)分类方法,将由不同特征组合的SVM分类器用于SAR影像分类,并对几种不同的分类结果进行定性和定量比较分析.实验结果表明,灰度和不同纹理特征组合的SVM分类方法能够取得较高的分类精度,其结果要优于传统的单一纹理特征分类,是一种有效的SAR影像分类方法. This paper proposes a set of SVM classification methods based on fusion of gray scale and texture features. A set of experiments are carried out using the SVM classifiers with feature fusion. Both qualitative and quantitative approaches are applied to assess the classification results. Experimental results demonstrate that the proposed approach is effective for SAR image classification with accuracy higher than those obtained by using single texture feature based algorithms.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第5期498-504,共7页 Journal of Applied Sciences
关键词 SAR影像分类 支持向量机 灰度 纹理 灰度共生矩阵 GABOR滤波 SAR image classification, support vector machine (SVM), gray scale, texture, gray level co-occurrence matrix, Gabor filter
  • 相关文献

参考文献16

  • 1焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
  • 2Zhao Q, Ppincipe J C. Support vector machines for SAR automatic target recognition [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001,37(2): 643-654.
  • 3Waske B, Benediktsson J A. Fusion of support vector machines for classification of multisensor data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 3858-3866.
  • 4Hu Deyong, Li Xiaojuan, Zhao Wenji, Gong Huili. Texture analysis and its application for singleband SAR thematic information extraction [C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008, Boston, MA 2008: 935-938.
  • 5成功,赵巍,潘锦锋.基于小波分解和支持向量机的MSTAR SAR目标分类识别研究[J].中国图象图形学报,2009,14(2):317-322. 被引量:7
  • 6Clausi D A. Comparison and fusion of cooccurrence,Gabor and MRF texture features for classification of SAR sea-ice imagery [J].Atmosphere-Ocean, 2001, 39(3): 183-194.
  • 7Clausi D A, Deng H. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities [J]. IEEE Transactions on Image Processing,2005, 14(7): 925-936.
  • 8袁礼海,宋建社,薛文通,郑永安.利用灰度和纹理特征的SAR图像分类研究[J].电光与控制,2007,14(4):58-62. 被引量:14
  • 9Solberg S, Jain A K. Texture fusion and feature selection applied to SAR imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(2): 475-479.
  • 10Haralick R M, Shanmugam K, Dinstein I.Textural features for image classification [J]. IEEE Transactions on Systems, Man and Cybernetics,1973, 3(6): 610-621.

二级参考文献17

  • 1Novak L M, Halversen S D, Owirka G J, et al. Effects of polarization and resolution on SAR ATR [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33( 1 ) : 102-115.
  • 2Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification [ J ]. IEEE Signal Processing Letters, 2006, 13 ( 5 ) : 308-311.
  • 3Ganapathiraju A, Hamaker J E, Picone J. Applications of support vector machines to speech recognition [ J ]. IEEE Transactions on Signal Processing, 2004, 52 (8) : 2348-2355.
  • 4Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition [ J ] . IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2) : 643-654.
  • 5Schumacher R, Schiller J. Non-cooperative target identification of battlefield target classification results based on SAR images [ J ]. Proceedings of the IEEE, 2005,93 : 167-172.
  • 6Douvilie P L. Measured and predicted synthetic aperture radar target comparison [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38( 1 ) : 25-37.
  • 7Ross T, Worrell S, Vehen V, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set [ J ]. Proceedings of SPIE, 1998, 3370 : 566-573.
  • 8Kijsirikul B, Ussivakul N. Multiclass support vector machines using adaptive directed acyclic graph[ J]. Proceedings of the IEEE, 2002, 90( 1 ) :980-985.
  • 9Voicu L I, Patton R, Myler H R. Multi-criterion vehicle pose estimation for SAR ATR [ J ] . Proceedings of SPIE, /999, 3721:497-506.
  • 10OLIVER C,SHAUN Que-gan.Understanding synthetic aperture radar images[M].Norwood:Artech House,1998:245-255.

共引文献47

同被引文献142

引证文献20

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部