期刊文献+

小波包分析和支持向量机用于直肠感知功能重建

Rectal Perception Function Rebuilding Based on Wavelet Packet Analysis and Support Vector Machine
下载PDF
导出
摘要 针对临床上肛门失禁导致的直肠感知功能丧失,提出一种基于小波包分析和支持向量机(support vector machine,SVM)重建患者直肠感知功能的方法.分析人体直肠生理特征,将典型直肠压力收缩波形中的巨大移行性收缩作为产生便意的主要依据.利用小波包分析对直肠压力信号进行特征提取,以分解层结点的L2范数和标准差作为特征向量.通过提取的直肠压力信号特征向量对基于SVM的直肠感知预测模型进行训练,对SVM的惩罚因子和核函数宽度进行交叉验证优化,并利用训练后的模型进行便意预测,同时对比分析了基于前馈神经网络和基于不同核函数的SVM便意预测的准确率.实验结果表明,所提出的方法能帮助患者重建直肠感知功能. To solve the problem of rectal perception loss caused by anal incontinence, a rectal perception function rebuilding method is proposed based on wavelet packet analysis and support vector machine (SVM). By analyzing the characteristics of human rectum, high-amplitude propagated contractions (HAPC) in rectal contractions are used to indicate an urge to defecate. Feature extraction of rectal pressure is done using wavelet packet analysis, and take L2 norm and standard deviation of decomposition nodes as eigenvector. A rectal perception prediction model is trained using SVM. By extracting eigenvector from rectal pressure signal, penalty factors and slack variables are cross validated and optimized. Then the trained model is used to predict the urge to defecate. Prediction accuracy of the feed-forward neural network and SVM with different kernel functions is compared. Experiment results show that the proposed method is effective to rebuild patients' rectal perception function.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第5期538-544,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.31100708 No.61104006)资助
关键词 小波包分析 支持向量机 直肠感知 特征提取 wavelet packet analysis, support vector machine, rectal perception, feature extraction
  • 相关文献

参考文献11

  • 1陈绍娟,李春联,叶石才.改良保留灌肠法在溃疡性结肠炎治疗中的应用[J].全科护理,2010,8(31):2834-2835. 被引量:7
  • 2Tsiaparas N N, Golemati S, Andreadis I, Stoitsis J S, Valavanis I, Nikita K S. Comparison of multriresolution features for texture classification of carotid atherosclerosis form B-Mode ultrasound [J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 1(15): 130-137.
  • 3杨帮华,颜国正,严荣国.脑机接口中基于小波包最优基的特征抽取[J].上海交通大学学报,2005,39(11):1879-1882. 被引量:20
  • 4Camilleri M, Bharucha A E, Lorebzo C D,Hasler W L, Prather C M. American neurogastroenterology and motility society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice [J]. Neurogastroenterology and Motility, 2008, 20: 1269-1282.
  • 5许斌.肛直肠运动和感觉功能检查技术应用现状[J].国外医学(消化系疾病分册),2000,20(4):213-216. 被引量:2
  • 6Poitras P, Poitras M R, Plourde V, Boivin M. Evolution of visceral sensitivity in patients with irritable bowel syndrome [J]. Digestive Diseases and Sciences, 2002, 47(4): 914-920.
  • 7Saeedi N E, Almasganj F, Torabinejad F. Support vector wavelet adaptation for pathological voice assessment [J]. Computers in Biology and Medicine,2011, 41: 822-828.
  • 8Jazebi S, Vahidi B, Jannati M. A novel application of wavelet based SVM to transient phenomena identification of power transformers [J]. Energy Conversion and Management, 2011, 52: 1354-1363.
  • 9Manimala K, Selvi K, Ahila R. Optimization techniques for improving power quality data mining using wavelet packet based support vector machine [J].Neurocomputing, 2011, 8: 1-12.
  • 10汤浩,姜敏,李红菊.肠易激综合征直肠感知功能和胆囊收缩功能的研究[J].中国实用内科杂志,2008,28(3):184-186. 被引量:1

二级参考文献48

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部