期刊文献+

无人机鲁棒反推自适应编队导引控制设计 被引量:4

Robust Adaptive Backstepping Design for Unmanned Aerial Vehicle Formation Guidance and Control
下载PDF
导出
摘要 针对一般不确定系统研究了一种鲁棒反推自适应控制方法,采用自适应神经网络对未建模动态进行补偿,并利用Lyapunov理论证明了跟踪误差的有界性.分析了长机一僚机编队方式下的无人机编队导引控制策略,采用鲁棒反推自适应控制与动态逆方法对无人机编队飞行综合导引控制律进行设计.进行了六自由度非线性仿真,表明所设计的编队导引控制器能使僚机对不确定机动的长机进行跟踪,并具有很好的鲁棒性. A robust adaptive backstepping method is proposed for a generic uncertain system, and its appli- cation to integrated guidance and control for unmanned aerial vehicle (UAV) formation flight studied. The unmodeled dynamics are compensated by an adaptive neural network. Boundedness of tracking errors is proved by the Lyapunov theory. The leader-follower formation flight guide and control strategy is introduced. An integrated guidance and control law of the UAV formation flight is designed based on the adaptive backstep- ping and dynamic inversion. A six-degree-of-freedom nonlinear simulation shows that the follower can robustly track the leader with uncertain maneuvering.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第5期552-558,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.61074007) 空军工程大学研究生创新基金 航空科学基金(No.2010818017)资助
关键词 无人机编队 综合导引控制 鲁棒反推自适应 自适应神经网络 不确定机动 unmanned aerial vehicle (UAV) formation flight, integrated guidance and control, robust adaptivebackstepping, adaptive neural network, uncertain maneuvering
  • 相关文献

参考文献13

  • 1Campa G, Gu Y, Seanor B. Design and flighttesting of nonlinear formation control laws [J]. Control Engineering Practice, 2007, 15(9): 1077-1092.
  • 2Galzi D, Shtessel Y. Close-coupled formation control using high order sliding modes [C]//AIAA Guidance, Navigation and Control Conference, San Francisco, 2005: 1-11.
  • 3Galzi D, Shtessel Y. Closed-coupled formation flight control using Quasi-continuous high-order sliding-mode [C]//American Control Conference,New York, 2007: 1799-1804.
  • 4Zhao W H, Go T H. 3-D formulation of formation flight based on model predictive control with collision avoidance scheme [C]//AIAA Aerospace Sciences Meeting. Florida: AIAA, 2010: 1-17.
  • 5Masanori K, Kenji U. Guidance law based on bifurcating velocity field for formation flight [C]//AIAA Guidance, Navigation, and Control Conference,Toronto, Canada: AIAA, 2010: 1-11.
  • 6宋敏,魏瑞轩,胡明朗.基于虚拟长机的无人机侦察编队控制方法[J].系统工程与电子技术,2010,32(11):2412-2415. 被引量:13
  • 7宋敏,魏瑞轩,沈东,胡明朗.基于非线性动态逆的无人机编队协同控制[J].控制与决策,2011,26(3):448-452. 被引量:16
  • 8Sharma M, Richards N D. Adaptive integrated guidance and control for missile interceptors [C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Rhode Island: AIAA, 2004: 1-15.
  • 9Chowdhary G, Johnson E N, Kimbrell M S, Chandramohan B, Calise A J. Flight test results of adaptive controllers in presence of severe structural damage [C]//AIAA Guidance, Navigation, and Control Conference, Toronto, Canada: AIAA, 2010:1-11.
  • 10Krstic M, Kkanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design [M]. New York: John Wiley & Sons, Inc., 1995.

二级参考文献18

  • 1Charles R P.The virtual UAV leader[C] //AIAA Conference and Exhibit,2007:2785-2798.
  • 2Ren W,Nathan S.Distributed coordination architecture for multi-robot formation control[J].Robotics and Autonomous Systems,2008,56(2):324-333.
  • 3Andrew S,Baris F,Dirk W.Hierarchical UAV Formation control for cooperative surveillance[C] //Proc.of The International Federation of Automatic Control,2008:12087-12092.
  • 4Aerosonde-Global Robotic Obervation System[EB/OL].(2006-7-19)[2009-05-15].http://www.aeroson-de.com.
  • 5Norman H M Li,Hugh H T Liu.Formation UAV Flight control using virtual structure and motion synchronization[C] //Proc.of American Control Conference,2008:1782-1787.
  • 6Sai M L,Jovan D B,Raman K M.Globally stable automatic formation flight control In two dime-nsions[C] //Proc,of AIAA Guidance,Navigation,and Control Conference and Exhibit,2001:6-9.
  • 7Dunbar W B,Murray R M.Distributed receding horizoncontrol with application to multi-vehicle formation stabilization[J].Automatica,2006,42(4):549-558.
  • 8McCanish S, Pachter M, Dazzo J. Optimal formation flight control[C]. AIAA Guidance Navigation and Control Conf. San Diego, 1996: 3868-3884.
  • 9Marcello R, Napolitano. Development of formation flight control algorithms using 3 YF-22 flying models[R]. Morgantown: West Virginia University, 2005.
  • 10Ren W, Nathan S. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(2): 324-333.

共引文献26

同被引文献33

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部