期刊文献+

MISO系统中上下行链路对偶性分析 被引量:1

Duality of Uplink and Downlink Channels in MISO Systems
下载PDF
导出
摘要 TDD系统中,利用上下行链路的对偶性可以将非凸的下行优化问题转换到上行链路,从而极大简化问题的分析和数值求解。上下行链路在波束成形和容量域两方面都存在对偶性。本文在统一的系统模型下,针对总功率约束和每天线功率约束两种情况,利用拉格朗日对偶法分别对波束成形对偶、容量域对偶做了推导、分析。此外,用凸优化软件包CVX简化了问题的建模。分析表明,上下行对偶等价于拉格朗日对偶,对偶问题可更一般地表示为极大极小问题。针对每天线功率约束下的波束成形问题,用迭代法和内点法分别对其进行了MATLAB仿真。仿真结果表明,非凸的下行优化问题可以利用对偶性转化为上行链路中的凸优化问题,从而得以解决。 The non-convex problems of the downlink channel can be transformed into the ones of the dual uplink channel in time division duplex(TDD) systems by uplink-downlink duality so that they are simplified and numerically traced.With Lagrangian duality,the duality on beamforming and capacity region under sum power constraint and per-antenna power constraint are deduced and analyzed,respectively.The software package convex(CVX) relevant to convex optimization is used to simplify the problem modeling.The analysis result shows that uplink-downlink duality is equivalent to Lagrangian duality.The min-max characterization is more general than uplink-downlink duality.The dual beamforming problem under per-antenna power constraint is simulated with MATLAB using the iterative algorithm and the interior point algorithm.Simulation results show that non-convex problems of the downlink channel can be resolved as a convex problem with uplink-downlink duality in the dual uplink channel.
作者 张瑞 宋荣方
出处 《数据采集与处理》 CSCD 北大核心 2012年第5期521-527,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60972041)资助项目 东南大学移动通信国家重点实验室开放课题基金资助项目 江苏省高校自然科学基础研究计划(08KJD510001)重大资助项目 教育部博士点基金(20080293004)资助项目 国家重大专项(2009ZX03003-006)资助项目 国家重点基础研究发展计划("九七三"计划)(2007CB310607)资助项目 河南工业大学校科研基金(09XGG010)资助项目 普通高校研究生科研创新计划(CXLX11-0405 CX10B-187Z)资助项目 南京邮电大学攀登计划(NY210006)资助项目
关键词 时分双工 上行链路 下行链路 上下行对偶 凸优化 总功率约束 time division duplex uplink channel downlink channel uplink-downlink duality convex optimization sum power constraint
  • 相关文献

参考文献15

  • 1Jindal N, Vishwanath S, Goldsmith A. On the dual- ity of Gaussian multiple-access and broadcast chan- nels[J]. IEEE Transactions on Information Theory, 2004,50(5) : 768-783.
  • 2Yu W. Uplink-downlink duality via minimax duality [J]. IEEE Transaetions on Information Theory, 2006,52(2) :361-374.
  • 3Zhang Lan, Zhang Rui, Liang Yingchang, et al. On Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints [C]//ISIT 2009. Seoul, Korea: [s. n. ], 2009,2502-2506.
  • 4Wiesel A, Eldar Y C, Shamai S. Linear preeoding via conic optimization for fixed MIMO receivers[J]. IEEE Transactions on Signal Processing, 2006, 54 (1):161-176.
  • 5Yu W, Lan Tian. Transmitter optimization for the multi-antenna downlink with per-antenna power con- straints[J]. IEEE Transactions on Signal Process- ing, 2007,55(6) :2646-2660.
  • 6Yang J, Kim D K. Multi-cell uplink-downlink beam- forming throughput duality based on lagrangian dual- ity with per-base station power constraints [J]. IEEE Communications Letters, 2008, 12 (4): 277- 279.
  • 7Dahrouj H, Yu W. Coordinated beamforming for the multicell multi-antenna wireless system[J]. IEEE Transactions on Wireless Communications, 2010, 9 (5) : 1748-1759.
  • 8Visotsky E, Madhow U. Optimal beamforming us- ing transmit antenna arrays [C]//IEEE Vehicle Technology Conference. Houston, TX: [s. n. ], 1999(1):851-856.
  • 9Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, U K: Cambridge Univ Press, 2004.
  • 10Vishwanath S, Jindal N, Goldsmith A. Duality, achievable rates, and sum-rate capacity of MIMO broadcast channels[J]. IEEE Transactions on Infor- mation Theory, 2003,49 (10) : 2658-2668.

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部