期刊文献+

基于自投影和灰度检索的视频帧中异常行为检测 被引量:5

Anomalous Behavior Detection in Video Sequence Based on Self-Casting Histogram and Gray Histogram
下载PDF
导出
摘要 针对智能监控系统,提出了一种基于运动目标灰度直方图和自身投影直方图的检索匹配方法,能够快速实现视频序列中行人的运动方向异常检测。该方法结合目标的灰度直方图和自身投影直方图在人群中快速检索匹配目标,采用目标质心运动历史记录表连续记录目标质心和运动方向,通过比较各个目标的运动方向找出运动人群中的异常目标。实验结果表明,引入目标的自身投影直方图,比只利用灰度图的灰度信息有更高的检测准确性,同时历史移动记录表可完全胜任运动目标信息记录的任务。该方法计算量小,同时利用记录质心的移动速度能实时对目标的运动情况进行预测,对运动目标的相互遮蔽有一定的鲁棒性。 For the intelligent video surveillance system,a motion object retrieval match approach is proposed,combining with the gray histogram and the self-casting histogram.It can rapidly detect an object with abnormal direction of motion.The method uses the feature combined with the gray and self-casting histograms to detect and match the object among crowds.And it uses the motion history record list of object centroid to continuously record the centroid of object and its motion direction.Besides,it compares the motion direction to find the abnormal object among moving crowds.The experiment result shows that compared with the method only employing the information of gray histogram,the accuracy of detection is improved after introducing object self-casting histogram,and the motion history record list is fully qualified to record the motion information of moving objects.The method has small amount of calculation and good robustness against objects covered by each other during their movement by recording the speeds of centroid motion.
出处 《数据采集与处理》 CSCD 北大核心 2012年第5期612-619,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60203018)资助项目 河北省教育厅自然科学基金(ZD200911)重点资助项目 河北省教育厅自然科学基金2009年第二批第十项资助项目
关键词 智能监控 灰度直方图 投影直方图 异常检测 intelligent video surveillance gray histogram self-casting histogram abnormal detection
  • 相关文献

参考文献28

  • 1Wren C R, Azarbayejani A, Darrell T, et al. Real- time tracking of the human body[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1997,19 (7) :780-785.
  • 2Staufer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//Proceed- ings of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. Fort Collins, USA: IEEE,1999:246-252.
  • 3Ahmad M, Taslima T, Lata L. A combined local global optical flow approach for cranial ultrasono- gram image sequence analysis[C]//Proeeeding of the llth International Conference on Computer and In- formation Technology. Khulna: [s. n.], 2008:654- 659.
  • 4Abd I J, Nekouim A. Determined prediction of non- linear time series via emotional temporal difference learning[C]//Proc of Control and Decision Confer- enee. Yantai, China : [s. n. ], 2008 : 5257-5262.
  • 5Ning Huazhong, Xu Wei, Zhou Yue. Temporal dif- ference learning to detect unsafe system states[C]// Proc of International Conference on Pattern Recogni- tion. USA. IEEE,2008:3434-3437.
  • 6杨勇,鲍晓静,段滔.实时多运动目标提取与跟踪研究[J].光学与光电技术,2004,2(2):24-26. 被引量:5
  • 7陈伟杰,王睿.复杂场景下灰度图像的运动目标跟踪[J].计算机与现代化,2007(10):110-113. 被引量:8
  • 8Comaniciu D, Ramesh V, Meet P. Kernel-based ob- ject tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5): 564- 577.
  • 9Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking [C]// Proc IEEE Int' 1 Conf Image Processing. Vancouver, Canada: IEEE, 2000: 70-73.
  • 10李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53

二级参考文献81

共引文献175

同被引文献68

  • 1ZHU Yongsheng ZHANG Youyun.A new type SVM——projected SVM[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):21-28. 被引量:1
  • 2丁艳辉,王洪国,高明,谷建军.一种发现有价值的稀有数据关联规则的算法[J].山东师范大学学报(自然科学版),2005,20(4):17-19. 被引量:1
  • 3Mei Xue, Ling Haibin, Jacobs D W. Illumination re covery from image with cast shadows via sparse rep resentation[J]. IEEE Transactions on Image Pro cessing, 2011,20(8) :2366-2377.
  • 4Lalonde J F, Efros A A, Narasimhan S G. Estima- ting the natural illumination conditions from a single outdoor image[J]. International Journal of Computer Vision, 2012,98(2) :123-145.
  • 5Land E H. The retinex theory of color vision[J]. Scientific American, 1977,237(6) : 108-129.
  • 6Yao Kang, Tian Deshou. Shadow removal from ima- ges using an improved single-scale retinex color res- toration algorithm [C]//International Joint Confer- ence on Computational Sciences and Optimization. Sanya, Hainan: IEEE, 2009,1:934-938.
  • 7Eli Arbel, Hagit Hel-Or. Shadow removal using in tensity surfaces and texture anchor points[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2011,33(6) : 1202-1216.
  • 8孙静,田建东,唐延东.静态室内图像投影边缘检测方法研究[J].仪器仪表学报,2010,31(s2):28-31.
  • 9Lalonde J F, Efros A, Narasimhan S. Detecting ground shadows in outdoor consumer photographs [C]//European Conference on Computer Vision. Heraklion, Crete, Greece: Springer, 2010:322-335.
  • 10Guo R, Dai Q, Hoiem D. Single-image shadow de- tection and removal using paired regions [C]//IEEE Conference on Computer Vision and Pattern Recogni- tion. Providence, RI: IEEE, 2011:2033-2040.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部