期刊文献+

多体系统动力学方程的反馈参数自适应约束违约稳定法 被引量:1

Adaptive Feedback Parameters for Baumgarte's Constraint Violation Stabilization Methods of Multibody System's Equations of Motion
原文传递
导出
摘要 约束违约稳定法的反馈参数的正确选择,是影响其计算准确性和稳定性的重要因素之一.通过计算误差、位移约束违约程度和速度约束违约程度3项指标来综合选择反馈参数,提出了一种多体系统动力学方程的反馈参数自适应的约束违约稳定法.数值分析表明:该方法适用于定步长和变步长、显式和隐式算法,有利于减小数值误差的积累和数值解的漂移,执行简单、高效、易于嵌入已有算法,且无需依赖于特定的积分方法. The reasonable selection of the feedback parameters is one of the important factors,which affects the accuracy and stability of the implement of the Baumgarte's constraint violation Stabilization Methods(BSM).For the equations of motion of multibody system,a modified BSM with adaptive feedback parameters is proposed.The feedback parameters are determined by the computational error,the degree of the position constraints violation and that of the velocity constraints violation.The numerical simulations show that the proposed method is applicable to the explicit(for example Dopri5) and implicit(for example Radau5) arithmetics,with constant or adaptive step size,and is also favorable to reduce the accumulation and magnification of the computational error during iterations.It is also easy to implement and embedded into the known arithmetics,and independent of special arithmetic.
作者 刘颖 马建敏
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期432-436,449,共6页 Journal of Fudan University:Natural Science
关键词 多体系统动力学 微分代数方程 约束违约稳定法 反馈参数 自适应 multibody system dynamics differential algebraic equation baumgarte's constraint violation stabilization methods feedback parameters adaptive
  • 相关文献

参考文献2

二级参考文献8

  • 1[1]BAUMGARTE J.Stabilization of constraints and integrals of motion in dynamical systems[J].Comp.Meth.in Appl Mech and Engineering,1972,1:1-16.
  • 2[3]BAUMGARTE J.A new method of stabilization for holonomic constraints[J].Journal of Applied Mechanics,1983,50:869-870.
  • 3[4]CHIOU J C,WU S D.Constraint violation stabilization using input-output feedback linearization in multibody dynamic analysis[J].Journal of Guidance,Control and Dynamics,1998,21(2):222-228.
  • 4[7]TSENG F C,MA Z D,HULBERT G M.Efficient numerical solution of constrained multibody dynamics systems[J].Comput Methods Appl Mech Engrg,2003,192:439-472.
  • 5[8]BAYO E,AVELLO A.Singularity-free augmented Lagrangian algorithms for constrained mutibody dynamics[J].Nonlinear Dynamics,1994,5:209-231.
  • 6崔红生,谢淑华,靳锐锋.肺间质纤维化临床分期与证候分布规律探讨[J].中华中医药杂志,2012,27(5):1443-1445. 被引量:42
  • 7李满意,娄玉钤.皮痹的源流及相关历史文献复习[J].风湿病与关节炎,2014,3(8):65-72. 被引量:25
  • 8欧阳燕,陈小容,郑林鑫,李理,李伟峰.黄芪通过抗氧化抑制博莱霉素诱导的小鼠肺纤维化[J].中国病理生理杂志,2017,33(7):1271-1277. 被引量:20

共引文献18

同被引文献13

  • 1Udwadia F E.A new perspective on the tracking control of nonlinear structural and mechanical systems[J].Proceedings of the Royal Society,Series A:Mathematical,Physical and Engineering Sciences,2003,459(2035):1783-1800.
  • 2Braun D J,Goldfarb M.Eliminating constraint drift in the numerical simulation of constrained dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,2009,198:3151-3160.
  • 3Baumgarte J.Stabilization of constraints and integrals of motion in dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,1972,1(1):1-16.
  • 4Lin S T,Chen M W.A PID type constraint stabilization method for numerical integration of multibody systems[J].Journal of Computational and Nonlinear Dynamics,2011,6(10):44501-44506.
  • 5Braun D J,Goldfarb M.Simulation of constrained mechanical systems-part I:an equation of motion[J].Journal of Applied Mechanics,2012,79(4):410171-410178.
  • 6Blajer W.An orthonormal tangent space method for constrained multibody systems[J].Computer Methods in Applied Mechanics and Engineering,1995,121(1):45-57.
  • 7Blajer W,Schiehlen W,Schirm W.A projective criterion to the coordinate partitioning method for multibody dynamics[J].Archive of Applied Mechanics,1994,64(2):86-98.
  • 8Blajer W.Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems[J].Multibody System Dynamics,2002,7(3):265-284.
  • 9Blajer W.Methods for constraint violation suppression in the numerical simulation of constrained multibody systems-A comparative study[J].Computer Methods in Applied Mechanics and Engineering,2011,200(13):1568-1576.
  • 10Kovecses J,Piedboeuf Jean-Claude.A novel approach for the dyamic analysis and simulation of constrained mechanical systems[C]//Proceedings of ASME 2003,Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Chicago Illinois USA.New York:ASME,2003:1-10.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部