期刊文献+

有限理性与一类多主从博弈问题的良定性 被引量:3

Bounded Rationality and Well-Posedness for A Class of Multi-Leader-Follower Games
下载PDF
导出
摘要 利用Ky Fan不等式证明了一类多主从博弈平衡点的存在性,并且定义了此类多主从博弈的有限理性函数.在非线性问题的良定性的框架下,使用有限理性证明了此类多主从博弈问题是广义Had-amard良定的和广义Tykhonov良定的. Ky Fan's Inequality was applied to prove the existence of equilibrium points of a class of multi-leader-follower games, and the rationality function for the multi leader-follower games was defined. Under well posedness for nonlinear prob lems frame, by using the rationality function of the multi-leader-follower games, we prove the multi-leader-follower games are generalized Hadamard well posedness and generalized Tykhonov well posedness.
作者 邓喜才 左羽
出处 《经济数学》 2012年第3期16-19,共4页 Journal of Quantitative Economics
基金 贵州省科技厅自然科学基金资助项目([2012]2289)
关键词 多主从博弈 存在性 有限理性函数 良定性 multi-leader-follower games bounded rationality funetion existence well posedness
  • 相关文献

参考文献12

  • 1I. MALLOZZ, J. MORGAN. ε-mixed strategies for static con tinuous kernel Stackelberg problem [J]. Journal of optimiza tion Theory and Applications, 1993, 78(1):303-316.
  • 2L MALLOZZ, J MORGAN. Weak stackelberg problem and mixed solutions under Data perturbations [J]. Optimization, 1995, 32(1):269-290.
  • 3M B LIGNOLA, J MORGAN. Topological existence and stability for stackelberg problems [J]. Journal of optimization theory and application, 1995, 84(1): 145-169.
  • 4A M ARTHFOUR. Mixed Solutions for Weak Stackelberg problems: Existence and Stability Results [J]. Journal of optimization theory and application, 2000, 105(2) :417-440.
  • 5J S PANG. , M FUKUSHIMA. Quasi variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Compnt. Manag. Sci. 2005, 2(1): 21-56.
  • 6俞建.博弈论与非线性分析[M].北京:科学出版社,2007.
  • 7M B LIGNOLA, J MORGAN α-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints [J]. J Glob Optim, 2006, 36(1):439-459.
  • 8X J LONG, N J HUANG. Metric characterizations of R-well- posedness for symmetric quasi equilibrium problems [J]. J Glob Optim , 2009, 45(1):459-471.
  • 9X X HUANG, X Q YANG, D L ZHU ,Levitin-Polyak well-posedness of variation inequality problems with functional constraints [J]. J Glob Optim, 2009, 44(1):159-174.
  • 10W PENG,-S-Y Wu , The Well-Posedness for Multiobjective Generalized Games[J]. J Optim Theory Appl, 2011, 150 ( 1 ) : 416-423.

共引文献1

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部