期刊文献+

有限状态多期模型下的最小熵等价鞅测度及其应用

Minimal Entropy Martingale Measure for a Finite States Multi-Period Model and Its Application
下载PDF
导出
摘要 采用有限状态多期模型描述股票价格变动过程,导出了有红利支付情形下的最小熵等价鞅测度,给出了股票价格变动趋势的风险中性预期与红利率和无风险利率之间相对大小的关系,从理论上证明了无风险利率大于股票红利率时,市场将呈现出一种向上的风险中性趋势;无风险利率小于股票红利率时,市场将呈现出一种向下的风险中性趋势;无风险利率等于红利率时,股票价格将围绕初始价格上下波动而没有明显的风险中性趋势. A multi-period model was used to describe the dynamic of stock price, and the minimal entropy martingale measure was deduced for this model. The relationship between the relative magnitude of dividends rate and riskless interest rate and the expectation of the risk neural market was investigated. It is proved that there is a upward expectation when the riskless interest rate is larger than the dividends rate; there is a downward expectation when the riskless interest rate is smaller than the dividends rate; and there is no obvious tendency and the price is expected to move around the original price when the two rates are equal.
出处 《经济数学》 2012年第3期56-59,共4页 Journal of Quantitative Economics
基金 中央高校基本科研业务费科研专项资助(CDJZR10 10 00 07)
关键词 有限状态多期模型 最小熵等价鞅测度 无风险利率 红利率 风险中性市场预期 multi period model minimal entropy martingale measure riskless interest rate dividends rate expectations of risk neural market
  • 相关文献

参考文献9

  • 1F BLACK, M SCHOLES. The pricing of options and corporate liabilities[J]. The Journal of Political Economy, 1977, 81(3): 637-659.
  • 2T H RYDBERG, N SHEPHARD. Dynamics of trade-by-trade price movements: decomposition and models [R]. Working paper 19 9 9 - W2 3, Oxford : Nuffield College, 1999.
  • 3M FRITTELLI. The minimal entropy martingale measure and the valuation problem in incomplete markets [J]. Mathemati cal Finance, 2000,10(1): 39-52.
  • 4F DELBAEN,W SCHACHERMAYER. The variance optimal martingale measure for continuous processes [J]. Bernoulli, 1996, 2(1): 81-105.
  • 5M SCHWEIZER. Variance optimal hedging in eiscrete Time [J]. Math. Operation Res,1995,20(1):1-32.
  • 6H FOLLMER, M SCHWEIZER. Hedging of contingent claims under incomplete information[C]//M H A DAVIS,R J ELLIOTT. Applied Stochastic Analysis, London: Gordon and Breach. 1991.
  • 7M STUTZER. A simple nonparametric approach to derivative security valuation [J]. Journal of Finance, 1996, 51(5): 1633-1652.
  • 8C F HUANG, R H LITZENGERGER. Foundamentions for financial economics [M]. The Netherlands: North Holland, 1988.
  • 9黄光辉.A purely data driven method for European option valuation[J].Journal of Chongqing University,2006,5(3):175-180. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部