期刊文献+

马铃薯单细胞^(60)Co-γ辐射诱变的初步研究 被引量:1

Preliminary Study on Mutation of Single-cells in Potato by ^(60)Co-γ Irradiation
下载PDF
导出
摘要 采用60Co-γ辐射处理马铃薯单细胞,快速高效获得马铃薯突变体材料,为丰富马铃薯育种材料提供支持。以紫色马铃薯‘黑美人’试管苗和块茎2种外植体为材料,进行愈伤组织诱导和继代培养并建立细胞悬浮培养系。以紫色马铃薯‘黑美人’单细胞为辐射材料,采用5个剂量的60Co-γ射线辐射处理,观察比较不同辐射处理条件下单细胞的再生率。结果表明:经过10Gy的60Co-γ辐射处理后,有一定数量的再生植株产生,20Gy的60Co-γ辐射处理后,植株再生慢,再生率低。经过40Gy和60Gy的60Co-γ辐射处理后无再生植株。细胞核制片观察结果表明:通过30天的再生培养后,细胞核的外形有明显的变化,10Gy的辐射处理对细胞核的影响仍明显低于20Gy,说明60Co-γ辐射处理单细胞引起的诱变具有一定的稳定性,有望获得到马铃薯突变体材料。 This paper was designed to discuss the mutation of single cells in potato by 60Co-γ irradiation and obtain potato mutants fast and efficient. The base of this experiment was used plantlet and tuber of purple potato variety‘Heimeiren’as material for callus induction and secondary culture to establish suspension culture line. Then single cells were selected as irradiation materials and 5 treatments with different radiation doses were designed to observe the regeneration rate of single cell in different radiation doses. The results indicated that, a certain amount of regenerated individual plantlets were produced with the radiation dose of 10 Gy while the regenerated individual plantlets were slower and lower with the radiation dose of 20 Gy. When the radiation dose was above 40 Gy there was no regenerated individual plantlets produced. The results of nucleus slices observation showed that, after the regeneration culture of 30 days, the change of nucleus shape was significantly and the effects of radiation dose of 10 Gy on nucleus were lower than that of 20 Gy. In conclusion, the mutation of single cells by 60Co-γ irradiation has certain stability and mutant materials have been expected to obtain.
出处 《中国农学通报》 CSCD 2012年第27期57-61,共5页 Chinese Agricultural Science Bulletin
基金 应用基础项目(2009JY0100) 青年科学基金项目(31000735)
关键词 马铃薯 单细胞 60CO-Γ辐射 突变体 再生 potato single-cell 60Co-γ irradiation mutant regeneration
  • 相关文献

参考文献19

二级参考文献164

共引文献438

同被引文献43

  • 1Skaradal A, Atala A. Biomaterials for integration with 3-D bioprinting[J]. Annals of Biomedical Engineering, 2015, 43(3): 730-746.
  • 2Bohandy J, Kim B F, Adrian F J. Metal deposition from a supported metal film using an excimer laser[J]. Journal of Applied Physics, 1986, 60(4): 1538-1539.
  • 3Fogarassy E, Fuchs C, Kerherve F, et al.. Laser- induced forward transfer of high- TcYBaCuO and BiSrCaCuO superconducting thin films[J]. Journal of Applied Physics, 1989, 66(1): 457-459.
  • 4Piqué A, Chrisey D B, Auyeung R C Y, et al.. A novel laser transfer process for direct writing of electronic and sensor materials [J]. Applied Physics A, 1999, 69(s1): S279-S284.
  • 5Ringeisen B R, Chrisey D B, Piqué A, et al.. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer[J]. Biomaterials, 2002, 23(1): 161-166.
  • 6Ringeisen B R, Kim H, Barron J A, et al.. Laser printing of pluripotent embryonal carcinoma cells[J]. Tissue Engineering Part A, 2004, 10(3-4): 483-491.
  • 7Barron J A, Wu P, Ladouceur H D, et al.. Biological laser printing: A novel technique for creating heterogeneous 3- dimensional cell patterns[J]. Biomedical Microdevices, 2004, 6(2): 139-147.
  • 8Serra P, Duocastella M, Fernández- Pradas J M, et al.. Laser- induced forward transfer: A laser- based technique for biomolecules printing[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 53-74.
  • 9Chen C Y, Barron J A, Ringeisen B R. Cell patterning without chemical surface modification: Cell-cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel[J]. Applied Surface Science, 2006, 252(24): 8641-8645.
  • 10Guillemot F, Guillotin B, Catros S, et al.. High-throughput biological laser printing: Droplet ejection mechanism, integration of a dedicated workstation, and bioprinting of cells and biomaterials[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 95-113.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部