期刊文献+

基于CUDA的快速车牌字符识别 被引量:1

FAST LICENSE PLATE CHARACTERS RECOGNITION BASED ON CUDA
下载PDF
导出
摘要 传统的车牌识别研究主要目的是提高识别准确率。利用CUDA技术在准确率不降低的情况下实现识别速度的提高。为此,对常用的SVM分类方法进行改进,使其能够在GPU上实现并行计算,再利用改进后的SVM训练和预测车牌字符数据。实验结果表明,相对于运行在CPU上的LIBSVM方法,经过改进的在GPU上运行的SVM方法能够带来1-30倍训练速度和50-72倍预测速度的提高,且随着样本数量的增加,加速效果会更加显著。 Traditional research of license plate recognition, mainly focuses on the improvement of identification accuracy; in this paper we will do some research on improving the recognition speed while guaranteeing the same accuracy. For this purpose, the common SVM classification method is improved to realise parallel computing in GPU. Then, the improved SVM is applied to license plate characters for training and predicting. Experimental results show that the improved SVM running on GPU is able to bring enhancement in 1 - 30 times faster training speed and in 50 -72 times faster prediction speed respectively than the popular solver LIBSVM on CPU, and the acceleration effect will be significantly enhanced with the increase of sample size as well.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第10期8-10,57,共4页 Computer Applications and Software
基金 国家自然科学基金项目(60873070)
关键词 CUDA SVM 车牌识别 并行计算 CUDA Support vector machine (SVM) License plate recognition Parallel computing
  • 相关文献

参考文献8

  • 1Vapnik V N.An overview of statistical learning theory[J].IEEETrans Neural Network,1999,10(5).
  • 2陈丽,陈静,高新涛,王来生.基于支持向量机与反K近邻的分类算法研究[J].计算机工程与应用,2010,46(24):135-137. 被引量:20
  • 3John C Platt.Fast training of support vector machines using sequentialminimal optimization[M] //Advances in kernel methods:support vec-tor learning,MIT Press,Cambridge,MA,USA,1999:185-208.
  • 4Gaetanno Zanghirati,Luca Zanni.A parallel solver for large quadratic programs in training support vector machines[J].Parallel Computing,2003,4(29):535-551.
  • 5Austin Carpenter.cuSVM:a CUDA implementation of support vector classification and regression[OL].Nvidia Coperation,2009.htttp://patternsonascreen.net/cuSVM.html.
  • 6Hsu C W,Lin C J.A comparison of methods for multiclass support vec-tor machines[J].IEEE Trans Neural Netw,2002,13(2).
  • 7Rong-En Fan,Pai-Hsuen Chen,Chih-Jen Lin.Working set selection u-sing second order information for training support vector machines[J].J.Mach.Learn.Res,2005,(6):1889-1918.
  • 8Chih-Chung Chang,Chih-Jen Lin.LIBSVM:A library for support vec-tor machines[J].ACM Transactions on Intelligent Systems and Tech-nology,2011,2(3):1-27.

二级参考文献9

  • 1业宁,王迪,窦立君.信息熵与支持向量的关系[J].广西师范大学学报(自然科学版),2006,24(4):127-130. 被引量:10
  • 2施建宇,潘泉,张绍武,邵壮超,姜涛.基于多特征融合的蛋白质折叠子预测[J].北京生物医学工程,2006,25(5):482-485. 被引量:2
  • 3Vapnik V N.The nature of statistical learning theory[M].New York: Springer Verlag, 2000 : 138-167.
  • 4Kom F,Muthukrishnan S.Influence sets based on reverse nearest neighbor queries[C]//Chen W D, Jeffrey F N, Philip A B. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA: 2000.New York, NY, USA: ACM Press, 2000 : 201-212.
  • 5Stanoi I,Agrawal D,Abbadi A E.Reverse nearest neighbor queries for dynamic data bases[C]//Chen W D, Jeffrey F N,Philip A B.Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000.New York,NY,USA:ACM Press,2000:44-53.
  • 6Yang C, Lin K I.An index structure for efficient reverse nearest neighbor queries[C]//George K.Proceedings of the IEEE International Conference on Data Engineering, Heidelberg, Germany,2001.Washington:IEEE Computer Society,2001:485-492.
  • 7Richard O D,Peter E H,David G S.Pattem classification[M].李宏东,姚天翔,译.北京:机械工业出版社,2003:151-158.
  • 8Platt J C.Probabilistic outputs for support vector machines and comparison to regularized likelihood methods[C]//Advances in Large Margin Classifiers.Cambridge, MA: MIT Press, 2000: 61-74.
  • 9李蓉,叶世伟,史忠植.SVM-KNN分类器——一种提高SVM分类精度的新方法[J].电子学报,2002,30(5):745-748. 被引量:133

共引文献19

同被引文献37

引证文献1

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部