期刊文献+

一种新的α-GMM聚类说话人确认算法 被引量:1

A NOVEL α-GMM CLUSTERING APPLIED IN SPEAKER VERIFICATION
下载PDF
导出
摘要 针对噪声环境下说话人识别率低的问题,提出一种基于α-GMM聚类和SVM的说话人确认算法。首先计算每位注册话者的α-GMM模型,并计算模型间的α散度,然后以该散度设计聚类算法,对话者的α-GMM模型进行聚类,得到各个类别的聚类中心模型用于训练SVM,进而得到最终识别结果。仿真实验结果表明,该算法相比于传统GMM和SVM具有更高的识别性能和良好的鲁棒性。 A novel speaker verification method based on a-GMM clustering and SVM is proposed in this paper in order to improve the recognition accuracy of speaker in noisy environment. Each of the registered speaker's a-GMM is computed first, and the a-divergence between models is computed simultaneously. And then, speaker' s a-GMM is clustered using the clustering algorithm designed with this or-divergence. Finally, clustering centre models of every category are derived and are used in training the SVM. Simulative experiment results show that our approach has higher recognition performance and better robustness than the traditional Gaussian mixed model (GMM) and SVM.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第10期191-193,共3页 Computer Applications and Software
基金 甘肃省教育厅基金项目(1113-01)
关键词 说话人确认 α-GMM K均值聚类 支持向量机 Speaker verification a-GMM K-means clustering Support vector machine (SVM)
  • 相关文献

参考文献7

  • 1Kong Aik Lee,Chang Huai You,Haizhou Li,et al.Using DiscreteProbabilities with Bhattacharyya Measure for SVM-Based Speaker Veri-fication[J].IEEE Transactions on Audio,Speech,and LanguageProcessing,2011,19(4):861-869.
  • 2侯风雷,王炳锡.基于说话人聚类和支持向量机的说话人确认研究[J].计算机应用,2002,22(10):33-35. 被引量:11
  • 3Yuxiang Shan,Jia Liu.Robust speaker recognition in cross-channelcondition based on Gaussian mixture model[J].Multimedia tools andapplications,2011,52(1):159-173.
  • 4Dalei Wu,Ji Li,Haiqing Wu.α-gaussian Mixture Modelling ForSpeaker Recognition[J].Pattern Recognition Letters,2009,30(6):589-594.
  • 5Fujimoto M,Riki Y A.Robust speech recognition in additive andchannel noise environments using GMM and EM algorithm[C].Acous-tics,Speech,and Signal Processing 2004:I-941-944.
  • 6Vijendra Raj Apsingekar,Phillip L,De Leon.Speaker Model Cluste-ring for Efficient Speaker Identification in Large Population Applica-tions[J].IEEE Transactions on Audio,Speech,and Language pro-cessing,2009,17(4):848-853.
  • 7罗瑜,李涛,王丹琛,何大可.支持向量机中核函数的性能评价策略[J].计算机工程,2007,33(19):186-187. 被引量:4

二级参考文献5

  • 1Vladimir N V.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 2Fisher R A. The Use of Multiple Measurements in Taxonomic Problems[J]. Annals of Eugenics, 1936, 7(2): 179-188.
  • 3Joachims T, Making Large-scale SVM Learning Practical[M]. Cambridge, UA: MIT Press, 1999,169-184.
  • 4Vapnik V . N.The Nature of Statistical Learning Theory ( Second Edition)[]..1999
  • 5张铃.基于核函数的SVM机与三层前向神经网络的关系[J].计算机学报,2002,25(7):696-700. 被引量:54

共引文献13

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部