期刊文献+

数据集浓缩研究综述 被引量:1

OVERVIEW ON DATASET CONDENSATION STUDIES
下载PDF
导出
摘要 数据集浓缩是在一定条件下去除数据集合中的噪声和冗余数据,选用一个充分小的数据子集来代替原有数据集,而不降低数据挖掘任务的精确度的过程,是数据挖掘任务得到良好效果的保障,在某些场合又可作为完成数据挖掘任务的主要方法。对数据集浓缩技术的发展状况进行总揽和评述,分析并展望未来发展方向,为将致力于此研究方向的科研人员提供参考。 Dataset condensation refers to the removal of the noisy and redundancy data in dataset in certain conditions. It supersedes the original dataset with a data subset small enough while maintaining the accuracy of data mining. It is the guarantee to the data mining with pref erable effect. In some cases, it can also be the main approach for implementing data mining task. The aim of this paper is to offer a reference to the researchers to be devoted to the field of dataset condensation technology by giving an overview and the comments on its development sit uation as well as the analysis and outlook on its prospect.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第10期211-215,共5页 Computer Applications and Software
基金 国家重大科技专项(2010ZX01045-001-004) 国家科技支撑计划项目(2011BAD21B02) 国家自然科学基金项目(60871042)
关键词 数据集 浓缩 噪声 冗余 子集 数据挖掘 Dataset Condensation Noisy Redundancy Subset Data mining
  • 相关文献

参考文献23

  • 1Tomek I.Two modifications of CNN[J].IEEE Transactions on Sys-tems,Man,and Cybemetics,1976,1(11):769-772.
  • 2Toussaint G T,Poulsen R S.Some new algorithm and software imple-mentation methods for pattern recognition research[C] //Proceedingsof the IEEE International Computer Software Applications Conference,Chicago,1979.
  • 3Fedefico J,Fuentes L.Instance selection and feature weighting usingevolutionary algorithms[C] //IEEE Proceedings of the 15th Internation-al Conference on Computing,2006:73-79.
  • 4Elkan C.Magical Thinking in Data Mining:Lessons from Coil Chal-lenge 2000[C] //Proceedings of the seventh ACM SIGKDD interna-tional Conference on Knowledge Discovery in Data Mining.San Fran-cisco.CA,USA:ACM,2001:426-431.
  • 5Marchiori E.Hit miss networks with applications to instance selection[J].Journal of Machine Learning Research,2008,9:997-1017.
  • 6Sánchez J S,Pla F,Ferri F J.Prototype selection for the nearest neigh-bour rule through proximity graphs[J].Pattern Recognition Letters,1997,18(6):507-513.
  • 7Kibler D,Aha D W.Learning representative exemplars of concepts:aninitial case study[C] //Proceedings of the Fourth International Work-shop on Machine Learning,1987:24-30.
  • 8焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值法[J].电子学报,2001,29(3):383-386. 被引量:48
  • 9Ferri F J,Sánchez J S,Pla F.Editing prototypes in the finite samplesize case using alternative neighbourhoods[J].Advances in PatternRecognition,1998:620-639.
  • 10Aha D W,Kibler D,Albert M K.Instance-based learning algorithms[J].Machine Learning,1991,6(1):37-66.

二级参考文献4

共引文献90

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部