期刊文献+

Biocorrosion property and cytocompatibility of calcium phosphate coated Mg alloy 被引量:6

磷酸钙表面改性镁合金的生物腐蚀性能及细胞相容性(英文)
下载PDF
导出
摘要 Calcium phosphate coated Mg alloy was prepared. The phase constitute and surface morphology were identified and observed by X-ray diffractometer (XRD) and SEM. The results show that the coating is composed of flake-like CaHPO4-2H2O crystals. The corrosion resistance of the coated Mg alloy was measured by electrochemical polarization and immersion test in comparison with uncoated Mg alloy. Cytocompatibility was designed by observing the attachment, growth and proliferation of L929 cell on both coated and uncoated Mg alloy samples. The results display that the corrosion resistance of the coated Mg alloy is better than that of uncoated one. The immersion test also shows that the calcium phosphate coating can mitigate the corrosion of Mg alloy substrate, and tends to transform into hydroxyapatite (HA). Compared with uncoated Mg alloy, L929 cells exhibit good adherence, growth and proliferation characteristics on the coated Mg alloy, indicating that the cytocompatibility is significantly improved with the calcium phosphate coating. 在镁合金表面制备磷酸钙涂层,利用X射线衍射仪确定涂层的相组成。用扫描电镜观察涂层的微观形貌。结果表明,涂层由板条状的CaHPO4·2H2O晶体组成。采用电化学测试和浸泡实验研究磷酸钙改性镁合金的生物腐蚀性能,并与未改性合金进行对比。通过观察L929细胞在材料表面的粘附生长状况来评价材料的生物相容性。电化学测试结果表明,磷酸钙改性镁合金比未改性合金显示出更好的耐腐蚀性能。浸泡实验表明,磷酸钙涂层可以减缓合金的腐蚀,且在浸泡过程中磷酸钙涂层发生了向羟基磷灰石(HA)的转变。与未改性合金相比,L929细胞在磷酸钙改性镁合金表面显示出良好的粘附、生长和分化特征,表明磷酸钙改性能明显提高基体合金的细胞相容性。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期2014-2020,共7页 中国有色金属学报(英文版)
关键词 biodegradable Mg surface modification corrosion CYTOCOMPATIBILITY 生物可降解镁 表面改性 腐蚀 细胞相容性
  • 相关文献

参考文献4

二级参考文献36

  • 1[1]Prener J S.The growth and crystallographic properties of calcium flour-and chlor-apatite crystals.J.Electrochem.Soc.Solid State Science,1967,114 (1):773.
  • 2[2]Roy D M,Eysel W,Dinger D.Hydrothermal Synthesis of various carbonate containing calcium hydroxyapatite.Mater.Res.Bull.,1974 (9):350.
  • 3[3]Aoki H,Kato K,Shiba M.Synthesis of hydroxyapatite under hy drothermal conditions.J.Dent.Apparatus and Materials,1972,13 (27):17076.
  • 4[4]Legeros R Z.Apatites in Biological Sstems.Prog.Crystal Growth Charact.,1982,4:14.
  • 5[5]Aoki H.Science and Medical Applications of Hydroxyapatite.Tokyo:Takayama Press System Center CO.,1991,16577.
  • 6[6]Young R A,Holcomb D W.Variability of hydroxyapatite preparations.Calcif.Tissue Int.1982; 34:17-32.
  • 7[7]Monma H,Ueno S,Kanazawa T.Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate.J.Chem.Tech.Biotechnol.,1981,31:154.
  • 8[8]Moreno E C,Vanighese K.Crystal growth of calcium apatite from dilute solutions.J.Crystal Growth,1981,53:200.
  • 9[9]Xu Ye,Wang Dazhi,Yang Lan,et al.Hydrothermal conversion of coral into hydroxyapatite,Mater.Char.2001,47:83-87.
  • 10[10]Vladimir S.K.,Serquei M.D.,Elena V.K.A method to fabricate porous spherical hydroxyapatite granules intended for time controlled drugrelease.Biomaterials,2002,23:3449454.

共引文献37

同被引文献81

  • 1B.J.Wang,D.K.Xu,X.Cai,Y.X.Qiao,L.Y.Sheng.Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg-8wt.%Li alloy[J].Journal of Magnesium and Alloys,2021,9(2):560-568. 被引量:17
  • 2王宏智,陈君,周建奇,姚素薇,张卫国.紫铜海水管焊接部位在海水中的腐蚀特征[J].中国有色金属学报,2006,16(4):645-650. 被引量:7
  • 3RENATO A A, MARA C L. Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation[J]. Acta Biomaterialia, 2012, 8(5): 937-962.
  • 4GU X, ZHENG Y F, CHENG Y, ZHONG S P, XI T F. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30(4): 484-498.
  • 5WITTE F, HORT N, VOGT C, COHEN S. Degradable biomaterials based on magnesium corrosion[J]. Current Opinion in Solid State and Materials Science, 2008, 12(5): 63-72.
  • 6WITTE F, FISHER J, NELLESEN J, CROSTACK H. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006, 27(7): 1013-1018.
  • 7GRAY J E, LUAN B J. Protective coatings on magnesium and its alloys-a critical review[J]. Journal of Alloys and Compounds, 2002, 336(1): 88-92.
  • 8YAN T T, TAN L L, XIONG D S, LIU X J. Fluoride treatment and in vitro corrosion behavior of an AZ3 lb magnesium alloy[J]. Materials Science and Engineering C, 2010, 30(5): 740-748.
  • 9WITTE F, FISCHER J, NELLESEN J, VOGT C, VOGT J, DONATH T, BECKMANN F. In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomaterial, 2010, 6(5): 1792-1799.
  • 10EVERETT E T. Fluodde's effects on the formation of teeth and bones, and the influence of genetics[J]. Journal of Dentist Research, 2001, 90(5): 552-560.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部