期刊文献+

不同增强相对挤压态Mg-Zn-Mn-Y合金动态再结晶影响分析 被引量:3

Influence of Secondary Phases on Dynamic Recrystallization Mechanisms in Extruded Mg-Zn-Y Magnesium Alloy
下载PDF
导出
摘要 采用Gleeble-3800热模拟试验机进行压缩试验,在温度250~400℃,应变速率0.001~10s-1范围内,研究了变形Mg-Zn-Mn-Y合金中含有不同增强相(I相和W相)对该合金高温流变行为及变形过程中动态再结晶行为的影响。结果表明:只含I相的合金I在较低温度下,表现出明显的加工硬化,峰值应力后发生断裂;在中高温度下,由于发生动态再结晶而表现出明显的流变软化。只含有W相的合金II在中低温度下变形时,峰值应力之前出现加工硬化,随后随动态再结晶的发生而出现软化;在高温下,加工硬化不明显。含有I相合金在变形量较小时(0.1和0.3),其动态再结晶以常规动态再结晶为主,较大变形量时(0.5)的动态再结晶机制为连续动态再结晶。含有W相合金变形量较小时的动态再结晶方式为连续动态再结晶,变形量较大时为旋转动态再结晶。由于含有不同增强相的合金动态再结晶机制不同,含有I相合金在高温下变形可获得均匀细小的再结晶晶粒;而含有W相合金在高温下变形时,晶粒长大。 The combination of low density and moderate strength makes wrought magnesium alloys well suited for the application where weight is of critical importance. In recent years, magnesium alloys containing rare earth Y element have been developed and extensively investigated. Mg-Zn-Y alloys have high specific strength and good creep resistance due to the presence of quasicrystals. The aim of the present study is to investigate DRX behavior and mechanism in extruded Mg-Zn-Y magnesium alloys with different secondary phases ( I- phase and W-phase) using Gleeble-3800 thermo mechanical simulator at the temperature range of 250 -400℃ (in step of 50℃ ) and in the strain range of 0. 001 - 10s 1. The mierostructures of the alloy in the different stages of processing were examined by optical microscopy (OM) and transmission electronic microscopy (TEM). The conclusions have been drawn from investigation are : at high temperature of 400℃ and strain rate of ls 1 , when true strain was low (0.1 or 0.3) , DRX mechanism of alloy with I-phase is normal as the ordinary DRX. When the true strain was high (0.5) , the DRX mechanism of alloy with W-phase is CDRX. At temperature of 300℃ and strain rate of 1s -1 , when the true strain was low, DRX mechanism of alloy with W-phase is CDRX, and when true strain was higher, and its DRX mechanism was the RDRX. Because of the DRX mechanisms of alloys with different secondary phases are dif- ferent, the effect of temperature on microstructure of the alloy after deformation were also different. For alloy with I-phase, grain size of DRX was decreased with deformation temperature increased but for alloy with W-phase, DRX grain grows abnormally. The microstructure of alloy with W-phase after deformation could be refined efficiently by increasing the strain.
出处 《航空材料学报》 EI CAS CSCD 北大核心 2012年第5期7-17,共11页 Journal of Aeronautical Materials
关键词 镁合金 热变形 动态再结晶机制 热模拟 Magnesium alloy hot deformation DRX mechanism thermal simulation
  • 相关文献

参考文献28

  • 1PRASAD Y V R K, RAO K P, GUPTA M. Hot workability and deformation mechanisms in Mg/nano-A1203 [ J]. Com- posites Science and Technology, 2009, 69:1070 -1076.
  • 2ION S E, HIJMPHREYS F J, WHITE S H. Dynamic re- crystallisation and the development of microstructure during the high temperature deformation of magnesium [ J]. Acta Materialia, 1982, 30:1909-1919.
  • 3HUMPHREYS F J, HATHERLY M, Recrystallization and Related Annealing Phenomena, 2nd ed [ M]. Oxford UK: Elsevier. 2004.
  • 4GALIYEV A, KAIBYSHEV R, GOTTSTEIN G. Correla-tion of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [ J ]. Acta Materialia, 2001 , 49 : 1199 - 1207.
  • 5SITDIKOV O, KAIBISHEV R. Dynamic Recrystallization in Pure Magnesium [J]. Materials Transactions, 2001; 42 : 1928 - 1937.
  • 6MWEMBELA A, KONOPLEVA E B, MCQUEEN H J. Mi- crostructural development in Mg alloy AZ31 during hot working [J]. Scripta Materialia, 1997; 37: 1789- 1975.
  • 7MYSttLYAEV M M, MCQUEEN tt J, MWEMBELA A, KONOPLEVA E. Twinning, dynamic recovery and recrys- tallization in hot worked Mg-A1-Zn alloy [ J ]. Materials Science and Engineering ( A), 2002, 337 : 121 - 133.
  • 8BARNETT M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31 [J]. Journal of Light Metals, 2001 ; 1 : 167 - 177.
  • 9BARNETT M R. Quenched and Annealed Microstructures of Hot Worked Magnesium AZ31 [ J ]. Materials Transac- tions, 2003; 44:571 -577.
  • 10BEER A G, BARNETT M R structure on the hot working [ J]. Materials Science and 423 : 292 - 299.

二级参考文献5

共引文献27

同被引文献29

  • 1张崧,唐建新,冯可芹,刘峰.高强度镁合金的研究现状及发展[J].热加工工艺,2004,33(8):52-54. 被引量:21
  • 2刘英,陈维平,张卫文,张大童,李元元.Effects of RE on Microstructures and Mechanical Properties of Hot-Extruded AZ31 Magnesium Alloy[J].Journal of Rare Earths,2004,22(4):527-532. 被引量:8
  • 3MORDIKE B L, EBERT T, Magnesium properties-applications-potential[J]. Materials Science and Engineering (A), 2001, 302(1):37-45.
  • 4LUO Z P, ZHANG S Q, TANG Y L, et al. Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents[J]. J Alloys Compd, 1994(209):275.
  • 5KAWAMURA Y, HAYASHI K, INOUE A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600MPa[J]. Mater Trans J IM, 2001(42):1171.
  • 6KAWAMURA Y. Abstracts of the 134th annual meeting of the Japan Institute of Metals[J]. Japan Institute of Metals Sendai Japan, 2004(263):264.
  • 7HAGIHARA K, KINOSHITA A, SUGINO Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Materialia, 2010(58):6282-6293.
  • 8SHAO X H, YANG Z Q, MA X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Materialia, 2010(58):4760-4771.
  • 9YAMASAKI M, HASHIMOTO K, HAGIHARA K, et al. Effect of multimodal microstructure evolution on mechanical properties of Mg-Zn-Y extruded alloy[J]. Acta Materialia, 2011(59):3646-3658.
  • 10LIU K, ZHANG J H, ROKHLIN L L. Microstructures and mechanical properties of extruded Mg-8Gd-0.4Zr alloys containing Zn[J]. Materials Science and Engineering(A), 2009, 505(1/2):13-19.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部