摘要
为了提高并行环境下的傅立叶算法的运行速度,深入研究在不同并行计算模型下的傅立叶算法性能特点,分析输出结果序列关系和递归层数的确定方法,对SIMD-MCC模型、SIMD-BF模型、SIMD-CC模型下的傅立叶算法计算步骤和算法复杂度进行研究。结果表明,SIMD-CC模型更适合傅立叶算法的运算,其计算时间复杂度可达到O(lbn),并且使用的处理器个数也较SIMD-MCC模型少。
In order to enhance the running rate of Fourier algorithm under the parallel environment the performance characteristics of Fourier algorithm with the different parallel computing model are thoroughly studied, and the output result sequence relations and the recursion layer definite method also analyzed. Then, the computing steps and algorithm complexity of Fourier algorithm under the SIMD-MCC model, the SIMI)-BF model and SIMD-CC model are discussed in detail. The experimental results show that SIMD-CC model is more suitable for Fourier algorithm operation, its computing-time complexity could reach O(ln), and compared with SIMD-MCC mode, less processors are used.
出处
《通信技术》
2012年第10期114-117,共4页
Communications Technology
基金
2011年广西教育厅科研课题(No.200103YB168)
关键词
并行计算
模型
性能
复杂度
parallel computing" model" performance
complexity