期刊文献+

基于负载分时分析的虚拟服务整合建模分析

Modeling Analysis of Virtual Service Consolidation Based on Workload Timesharing Analyzing
下载PDF
导出
摘要 介绍了一种面向下一代绿色数据中心的虚拟服务整合方案。基于服务负载高峰处于不同时段的原理,提出了基于负载分时分析的建模方法,在保证QoS的前提下能够达到资源利用率最大化。考虑了服务之间的联系性和互斥性,以及服务与服务器之间的兼容性,提出了5项整合原则,使该方案具有更强的实际应用价值。将建立的模型看作是有约束的多维装箱问题,提出了基于分组遗传算法(GGA)的智能优化算法搜索全局最优解。通过实验表明,该方案与之前的模型相比具有更高的整合率。 A solution of virtual service consolidation oriented to next generation green data center is introduced in this paper. Due to the peak-valley of the workload of services is in different time, a way to problem modeling is proposed based on workload timesharing analysis, which can achieve maximal resource utilization on the premise of keeping the required QoS. Meanwhile, the associated services and the mutual services, and the compatibility between services and servers are taken into account and five principles of consolidation are considered. By regarding the modeling as a multi-dimension bin packing problem with constraints, we propose a GGA-based heuristic to search for the global optimal solution. The experimental results show that the solution can get a better consolidation ratio than the former model.
作者 敬思远 佘堃
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期775-780,共6页 Journal of University of Electronic Science and Technology of China
基金 国家863项目(2008AA04A107)
关键词 分组遗传算法 多维装箱问题 虚拟服务整合 负载分析 grouping generic algorithm multi-dimension bin packing problem virtual service consolidation workload analysis
  • 相关文献

参考文献13

  • 1PARENT K. Server consolidation improves IT's capacity utilization[R]. Court Square Data Group, 2005.
  • 2SPELLMANN A, ERICKSON K, REYNOLDS J. Server consolidation using performance modeling[J]. IT Professional, 2003, 5(5): 31-36.
  • 3BICHLER M. Capacity planning for virtualized servers[C]// 16th Workshop on Information Technologies and System. Milwaukee, USA: [s.n.], 2006.
  • 4AIJIRO Y, TANAKA A. A combinational optimization algorithm for server consolidation[C]//The 21st Annual Conference of Japanese Society for Artificial Intelligence. Kyoto, Japan: [s.n.], 2007.
  • 5GUPTA R, BOSE S K, SUNDARRAJAN S, et al. A two stage heuristic algorithm for solving the server consolidation problem with item-item and bin-item incompatibility constraints[C]//Proceedings of 1EEE Conference on Service Computing. Hawaii, 2008. International USA: IEEE,.
  • 6AGRAWAL S, BOSE S K, SUNDARRAJAN S. Grouping genetic algorithm for solving the server consolidation problem with eonflicts[C]//Proceedings of the first ACM/ SIGEVO Summit on Genetic and Evolutionary Computation Shanghai, China: ACM, 2009.
  • 7BENEVENUTO F, FERNANDES C. Performance models for virtualized applications[C]HISPA 2006 Workshops. IS.1.]: [s.n.], 2006.
  • 8GTSI White Paper. Reducing data center's power and energy consumption: saving money and go green[EB/OL]. [2009-10-21]. http://www.gtsi, com/cms.
  • 9CHEKURI C, KHANNA S. On multi-dimensional packing problems[C]//Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms. Baltimore, Maryland, USA: ACM, 1999.
  • 10GAREY M R, JOHNSON D S. Computer and interactability: a guide to the theory of NP-completeness[M]. New York, USA: W H Freeman and Company, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部