期刊文献+

分散矩形特征结合软级联的人眼检测研究

Study on Eye-Detection Combined Scattered Rectangle Feature with Soft Cascade
下载PDF
导出
摘要 采用优化的分散矩形特征结合软级联进行了人眼检测研究,针对分散矩形特征会造成特征数量暴增的问题,给出了一种优化解决方案;针对级联分类器训练过程中训练难度不断加大的问题,提出了一种按指数规律调整每层的最小检出率和最大误检率的方法 .优化后训练所需时间缩短为优化前的1/3,改进后分类器性能相比原始特征有所提高.人眼检测实验结果表明:该分类器具有更好的分类能力. Optimized scattered rectangle feature combining with soft cascade is used in eye detection. First, because the number of features will explode by using scattered rectangle feature, an optimized solution is proposed. Second, for the increasingly difficulty of cascade classifier training process, a method that the minimum hit rate and the maximum false alarm of every stage is adjusted according to exponential curve has been proposed. The improved methods result in two- thirds fewer training time consume and a higher classifier performance. In eye detection experiments, the results show that the classifier has better classification ability.
出处 《中南民族大学学报(自然科学版)》 CAS 2012年第3期77-80,共4页 Journal of South-Central University for Nationalities:Natural Science Edition
关键词 AdaBoost级联学习 人眼检测 分散矩形特征 软级联 AdaBoost-cascade learning eye detection scattered rectangle feature soft cascade
  • 相关文献

参考文献9

  • 1Lin Kunhui, Huang Jiyong, Chen Jiawei, et al. Real- time eye detection in video streams [ C ]//IEEE. Fourth International Conference on Natural Computation. Jinan: IEEE Computer Society, 2008 : 193-197.
  • 2Hea Z , Tan T , Suna Z. Topology modeling for Adaboost-cascade based object detection [ J ]. Journal Pattern Recognition Letters Archive, 2010, 31 ( 9 ) : 912-919.
  • 3赵雪竹.基于AdaBoost算法的驾驶员疲劳检测[D].广州:华南理工大学,2010.
  • 4Viola P , Jones M. Rapid object detection using a boosted cascade of simple features [ C ]//CVPR. Proceedings IEEE Conf on Computer Vision and Pattern Recognition. Hawaii : CVPR, 2001.
  • 5刘艺,龚卫国,李伟红.双层结构Adaboost健壮分类器用于人眼精确定位[J].计算机应用,2008,28(3):801-803. 被引量:5
  • 6唐旭晟,欧宗瑛,苏铁明,赵鹏飞.复杂背景下人眼的快速定位[J].计算机辅助设计与图形学学报,2006,18(10):1535-1540. 被引量:14
  • 7韩晶,王元庆.基于亮瞳效应的连续AdaBoost人眼检测[J].电子测量技术,2009,32(8):114-117. 被引量:5
  • 8王健.基于Gentle Adaboost算法的人脸检测研究[D].成都:电子科技大学,2008.
  • 9Bourdev L, Brandt J. Robust object detection via soft cascade [ C ]//CVPR. Proc IEEE Conf on Computer Vision and Pattern Recognition ( CVPR ' 05 ). San Diego: CVPR, 2005 : 236-243.

二级参考文献38

  • 1梁毅雄,龚卫国,潘英俊,李伟红,刘嘉敏,张红梅.基于奇异值分解的人脸识别方法[J].光学精密工程,2004,12(5):543-549. 被引量:40
  • 2宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 3武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 4陈春波,王元庆.基于红眼效应的人眼探测[J].计算机工程与应用,2007,43(9):198-200. 被引量:4
  • 5HARO A,FLICKNER M,ESSA I. Detecting and tracking eyes by using their physiological properties, dynamic and appearance [C]. proceeding of CVPR 2000:163-168.
  • 6VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[C]. K Hawaii.. IEEE Conf. Computer Vision and Pattern Recognition, 2001.
  • 7VIOLA P,JONES M. Robust real-time object detection,Cambridge Research Laboratory[J]. Tech. Rep. :CRL,2001/01,2001.
  • 8SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999,37(3) : 297-336.
  • 9FREUND Y,SCHAPIRE R E. Experiments with a new boosting algorithmiC]. Proc. The 13^th Conf. Machine Learning. SanFrancisco: Morgan Kaufmann, 1996 : 148-156.
  • 10Riopka T P,Boult T.The eyes have it[C] //Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications.Berkley,California:ACM Press,2003:9-16

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部