摘要
设p是6k+1型的奇素数,运用Pell方程px2-3y2=1的最小解、同余式、平方剩余、勒让德符号的性质等初等方法证明了当p=3n(n+1)+1≡1,7(mod8)(n为单数)为奇素数,且2n+1为奇素数时,指数Diophantine方程x3-1=2py2无正整数解.
Let p be an odd prime of the form 6k+1. Using the elementary method of the smallest solution of the Pell equation px2-3y2=1, congruent formula, quadratic residue, and the nature of legendre sign,this paper obtains a sufficient condition that the Diophantine equation x3- 1≡2py2 has no integer solutions, where p=3n(n+ 1)+ 1 ≡ 1, 7(mod8), n is a positive odd integer, P and 2n+ 1 are odd prime.
出处
《西南民族大学学报(自然科学版)》
CAS
2012年第5期736-738,共3页
Journal of Southwest Minzu University(Natural Science Edition)