期刊文献+

一类可非线性控制系统的降维观测器设计与仿真

Design and Simulation for the Class of Nonlinear Systems Reduced-Order Observers
下载PDF
导出
摘要 论文主要研究为一类Lipschitz非线性系统设计全维和降维观测器.基于微分中值定理和一个重要的矩阵不等式,研究了这类非线性系统观测器存在的充分条件,并且以线性矩阵不等式的形式给出,所得结论至少是已有文献的补充.此外,获得的充分条件要比文献中这类非线性系统降维观测器的设计方法要减少保守性.同文献[1]相比,避免了解高阶线性矩阵不等式,而且线性矩阵不等式的可解性也更优于已有文献中矩阵不等式的可解性.最后,仿真算例验证了结论的有效性. In this paper, the full and reduced - order observer design for a class of Lipschitz nonlinear systems is investigated. Based on the differential mean value theorem (DMVT) and an important matrix inequality, sufficient conditions for the existence of the observers of the class of nonlinear systems are proposed. The proposed sufficient conditions are given in terms of linear matrix inequalities (LMIs), and they are complements of the sufficient conditions given in literature at least. In addition, a sufficient condition which is less conservative than those given in literature for reduced - order observer design of a class of nonlinear systems is obtained. By comparison with referece [ 1 ], the proposed approach avoids solving high - order LMI. The solvability of the p examples are given to illustrate the LMI is better than that of the matrix inequality given in literature. Some proposed approach
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2011年第5期8-12,共5页 Natural Science Journal of Harbin Normal University
关键词 非线性系统 观测器设计 线性矩阵不等式(LMI) 微分中值定理(DMVT) Nonlinear system Observer design Linear matrix inequality (LMI) Differential meanvalue theorem (DMVT)
  • 引文网络
  • 相关文献

参考文献18

  • 1Zemouche A, Boutayeb M and Bara G I. Observers for a class of Lipschitz systems with extension to H~ performance analy- sis. System & Control Letters, 2008,57:18 -27.
  • 2Krener A J, Hedrick J K. Linearization by output injection and nonlinear observers. Syst Control Lett, 1983,3:47 -52.
  • 3Gauthier J P, Hammouri H,Othman S. A simple observer for nonlinear system. Applications to bioreactors, IEEE Tran Au- tomat Control, 1992,37 (6) :875 - 880.
  • 4Xia X H, Gao W. Nonlinear observer design by observer error linearization, SIAM J. Control Optim, 1989,27 : 199 - 216.
  • 5Besancon G, Hammoufi H. On uniform observation of nonuni- formly observablesystems. Syst Control Lett, 1996,29 : 9 - 19.
  • 6Besancon G, Hammouri H. Reduced order observer for a class of nonuniformly observable systems, in Proc. 34th Conf. De- cision and Control, New Orleans, LA, 1995. 121 - 125.
  • 7Dawson D M. On the state observation and output feedback problems for nonlinear uncertain dynamic systems. Syst Con- trol Lett, 1992, 18:217 - 222.
  • 8Guang Da H. Observers for one - sided Lipschitz non - linear systems. IMA J Math Control Inf, 2006,23:395 -401.
  • 9Guang Da H. A note on observer for one - sided Lipschitz non - linear systems. IMA J Math Control inf, 2008, 25 : 297 - 303.
  • 10Ibrir S. Circle - criterion approach to discrete - time nonlinear observer design. Automatica, 2007,43:1432 - 1441.
;
使用帮助 返回顶部