期刊文献+

一类奇异微分方程边值问题的数值方法

Numerical Method for a Class of Singular Boundary Value Problems of Differential Equations
下载PDF
导出
摘要 在再生核空间中讨论一类二阶奇异微分方程两点边值问题.研究方程解存在的充分性和解唯一的必要性,建立解的精确表达式,获得近似解的求解方法,数值模拟结果说明该方法的有效性. In this paper, a class of singular two - point boundary value problems (BVPs) of second - order ordinary differential equations in the reproducing kernel space is discussed . A sufficient condition which guarantee the existence of solution is discussed and a necessary condition for uniqueness of solution is established . Moreover, the exact representation of the solution of the singular BVPs is presented and a algorithm is given to solve this kind of equations. The numerical experiments are displayed to demonstrate the validity of the method.
作者 杜广环 朱捷
机构地区 黑龙江科技学院
出处 《哈尔滨师范大学自然科学学报》 CAS 2011年第5期15-17,共3页 Natural Science Journal of Harbin Normal University
基金 黑龙江省教育厅科学技术研究项目(12511483)
关键词 奇异微分方程 边值问题 再生核空间 Singular Differential Equation Boundary Value Problem Reproducing Kernel Space
  • 相关文献

参考文献7

  • 1Ravi Kanth A S V, Reddy Y N. Cubic spline for a class of singular two- point boundary value problems. Appl Math Comput,2005,170 : 733 - 740.
  • 2Kadalbajoo M K, Aggarwal V K. Numerical solution of singular boundary value problems via Chebyshev polynomial and B - spline. Appl Math Comput,2005 ,160 :851 - 863.
  • 3Ravi Kanth A S V, Reddy Y N. Higher order finite difference method for a class of singular boundary value problems. Appl Math Comput ,2004,155:249 - 258.
  • 4Mohanty R K, Sachder P L, Jha N. An O (h4) accurate cubic spline TAGE method for nonlinear singular two point boundary value problem. Appl Math Comput,2004,158 : 853 - 868.
  • 5Zhou Yongfang, Cui Minggen, Lin Yingzhen. Numerical algo- rithm for parabolic problems with non - classical conditions. Journal of Computational and Applied Mathematics, 2009, 230:770 - 780.
  • 6Yao Huanmin, Cui Minggen. Searching the least value meth- od for solving fourth - order nonlinear boundary value prob- lems. Computers and Mathematics with Applications,2010, 59:677 - 683.
  • 7Zhou Yongfang, Lin Yingzhen. Solving integro -differential equations with Cauchy kemel. Applied Mathematics and Com- putation,2009,215:2438 - 2444.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部