期刊文献+

无闭轨Lienard系统20种非Q结构的实现 被引量:1

Realization of the 20 kinds of non-Q obit structures of lienard systems without closed orbit
下载PDF
导出
摘要 在无闭轨Lienard系统完整拓扑分类的基础上,证明了20种非Q轨线结构的实现性,并给出每一种拓扑结构具体实现的充分条件. Basing on the known orbit classification of Lienard systems without closed orbit,this paper prove the realization of the 20 kinds of non-Q structures and give the sufficient conditions of every realization.
作者 李晓月 王克
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期1-8,共8页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10701020 11171056 11171081) 吉林省自然科学基金资助项目(20101593)
关键词 LIENARD系统 闭轨 拓扑分类 Gauss球面 Filippov变换 Lienard systems; closed orbit; topological classification; Gauss sphere; Fillippov transformation
  • 相关文献

参考文献15

二级参考文献34

  • 1VAN DER POL B.Surles oscillations de relaxation[J].The Philos Magazine,1926,7:978-992.
  • 2MURESAN M.Global attractivity without stability for Lienard type systems[J].Int J Math Sci,2001,27(2):91-98.
  • 3ALEKSANDROV A YU.On the stability of the vector Lienard equation with unsteady perturbations[J].(Russian)Sibirsk Mat Zh,1999,40(5):977-986.
  • 4HAN M,BI P,XIAO D.Bifurcation of limit cycles and sparatrix loops in singular Lienard systems[J].Chaos Solitons Fractals,2004,20(3):529-546.
  • 5GASULL A,GIACOMINI H.A new criterion for controlling the number of limit cycles of some generalizad Lienard equations[J].J Differential Equations,2002,185(1):54-73.
  • 6ABBAOUI L,BENDJEDDOU A.On the exact limit cycles for Lienard-type equation[J].Far East J Math Sci,2001,3(5):865-872.
  • 7GASULL A,TORREGROSA J.Small-amplitude limit cycles in Lienard systems via multiplicity[J].J Differential Equations,1999,159(1):186-211.
  • 8CHRISTOPHER C,LYNCH S.Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces[J].Nonlinearity,1999,12(4):1099-1112.
  • 9CAUBERGH M,DUMORTIER F.Hilbert's 16th problem for classical Lienard equations[J].J Differential Equations,2008,244:1359-1394.
  • 10SANTOS G T.Lecture notes in Math[M].Berlin:Springer,1977:597,605-640.

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部