期刊文献+

Fermi level depinning by a C-containing layer in a metal/Ge structure by using a chemical bath

Fermi level depinning by a C-containing layer in a metal/Ge structure by using a chemical bath
原文传递
导出
摘要 Insertion of a C-containing layer in a metal/Ge structure,using a chemical bath,enabled the Schottky barrier height(SBH) to be modulated.Chemical baths with 1-octadecene,1-hexadecene,1-tetradecene,and 1- dodecene were used separately with Ge substrates.An ultrathin C-containing layer stops the penetration of free electron wave functions from the metal to the Ge.Metal-induced gap states are alleviated and the pinned Fermi level is released.The SBH is lowered to 0.17 eV.This new formation method is much less complex than traditional ones,and the result is very good. Insertion of a C-containing layer in a metal/Ge structure,using a chemical bath,enabled the Schottky barrier height(SBH) to be modulated.Chemical baths with 1-octadecene,1-hexadecene,1-tetradecene,and 1- dodecene were used separately with Ge substrates.An ultrathin C-containing layer stops the penetration of free electron wave functions from the metal to the Ge.Metal-induced gap states are alleviated and the pinned Fermi level is released.The SBH is lowered to 0.17 eV.This new formation method is much less complex than traditional ones,and the result is very good.
出处 《Journal of Semiconductors》 EI CAS CSCD 2012年第10期16-20,共5页 半导体学报(英文版)
基金 supported by the Chinese National Key Basic Research Program(No.2011CBA00602) the National Key Scientific and Technological Projects,China(Nos.2009ZX02035-004-02,2011ZX02708-002)
关键词 Schottky barrier Fermi level pinning chemical bath blocking layer Schottky barrier Fermi level pinning chemical bath blocking layer
  • 相关文献

参考文献23

  • 1Caymax M, Eneman G, Bellenger F, et al. Germanium for ad?vanced CMOS anno 2009: a SWOT analysis. Technology Digest ofIntemational Electron Devices Meet, 2009: 461.
  • 2Chui C, Gopalakrishnan K, Griffin P. Activation and diffusion studies of ion-implanted p and n dopants in germanium. Appl Phys Lett, 2003, 83: 3275.
  • 3Chui C, Kulig L, Moran J, et al. Germanium n-type shallow junc?tion activation dependences. Appl Phys Lett, 2005, 87: 091909.
  • 4Dimoulas A, Tsipas P, Sotiropoulos A, et al. Fermi-level pinning and charge neutrality level in germanium. Appl Phys Lett, 2006, 89: 252110.
  • 5Nishimura T, Kita K, Toriumi A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium in?terface. Appl Phys Lett, 2007, 91: 123123.
  • 6Connelly D, Faulkner C, Grupp D, et al. A new route to zero?barrier metal source/drain MOSFETs. IEEE Trans Nanotechnol, 2004, 3(1): 98.
  • 7Connelly D, Faulkner C, Clifton P, et al. Fermi-level depinning for low-barrier Schottky source/drain transistors. Appl Phys Lett, 2006,88:012105.
  • 8Kobayashi M, Kinoshita A, Saraswat K, et al. Fermi level de?pinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. J Appl Phys, 2009, 105:023702.
  • 9Dimoulas A, Gusev E, McIntyre P. Advanced gate stacks for high-mobility semiconductors. Berlin: Springer, 2007.
  • 10Choi K, Buriak J. Hydrogermylation of alkenes and alkynes on hydride-terminated Ge(100) surfaces. Langmuir, 2000, 16: 7737.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部