期刊文献+

二阶Hamilton系统具相关性质的次调和解的存在性

Subharmonic solutions with certain properties for second order Hamiltonian system
下载PDF
导出
摘要 给出了二阶非自治Hamilton系统ü(t)+▽F(t,u(t))=0,a.e.t∈R在势函数是次线性的情况下具有相关性质且极小化泛函的次调和解的存在条件,得到了在某个方向上存在无穷多个具有这些性质的次调和解的存在准则,推广了文献中的一些结果. The existence of subharmonic solutions with some extra properties for the following non-autonomous second order Hamiltonian system u(t)+ F(t,u(t))=0,a.e.t∈R was studied under the condition that the potential function was sub-linear. Some new criterions were obtained for guaranteeing that the problem had infinitely distinct subharmonic solutions in some direction. Recent results from the literature were significantly improved.
出处 《仲恺农业工程学院学报》 CAS 2012年第3期42-46,共5页 Journal of Zhongkai University of Agriculture and Engineering
基金 仲恺农业工程学院教师教学团队基金(E4081708)资助项目
关键词 HAMILTON系统 相关性质 次调和解 次线性 Hamihonian systems correlated property subharmonic solution sub-linearity.
  • 相关文献

参考文献13

  • 1MAWHIN J, WILLEM M. Critical point theory and hamiltonian systems[ M]. New York: Spfinge - Verlag, 1989.
  • 2GIANNONI F. Periodic solutions of dynamical systems by a saddle point theorem of rabinowitz[ J]. Nonlinear Anal, 1989, 13 (6) : 707 -719.
  • 3FONDA A, RAMOS M, WILLEM M. Subharmonical solutions for second order differential equations [ J ]. Topoi Methods Nonlinear Anal, 1993, 1(1): 49-66.
  • 4TANG C L. Periodic solutions for nonautonomous sublinear second order systems with sublinear nonlinearity [ J ]. Prec Amer Math Soc, 1998, 126(11) : 3263 -3270.
  • 5TANG C L, WU X P. Subharmonic solutions for nonautonomous sublinear second order Hamiltonian systems [ J ]. J Math Anal Ap- pl, 2005, 304(1): 383-393.
  • 6TANG C L, WU X P. Periodic solutions for second order systems with not uniformly coercive potential [ J ]. J Math Anal Appl, 2001, 259(2) : 386 -397.
  • 7ZHAO F K, WU X. Periodic solutions for a class of non-autono- mous second order systems [ J ]. J Math Anal Appl, 2004, 296 (2) : 422 - 434.
  • 8ZHAO F K, WU X. Saddle point reduction method for some non- autonomous second order systems[ J ]. J Math Anal Appl, 2004, 291 (2) : 653 -665.
  • 9ZHAO F K, WU X. Existence and multiplicity of periodic solution for on-antonomous second-order systems with linear nonlinearity [J]. Nonlinear Analysis, 2005, 60(2) : 325 -335.
  • 10SUN Z, YANG F, CHEN X. Subharmonical solutions for non-au- tonomous sublinear second-order hamiltonian systems [ J ]. Nonl Func Anal Appl, 2008, 13 (3) : 367 -376.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部