期刊文献+

两个拟互素因子链上倒数幂GCD与倒数幂LCM矩阵的非奇异性

Nonsingularity of the reciprocal power GCD matrices and the reciprocal power LCM matrices on two quasi-coprime divisor chains
原文传递
导出
摘要 设S={x_1,x_2,…,x_n}是一个正整数的集合,a是一个正实数.如果一个n阶矩阵的第i行第j列的元素定义为1/(x_i,x_j)~a,其中(x_i,x_j)~a表示S中的元素x_1与x_j的最大公因数的a次幂,则称这个矩阵是定义在S上的倒数幂GCD矩阵,用(1/S^a)表示.类似可定义倒数幂LCM矩阵[1/S^a].作者得到了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵的行列式公式,并由此证明了定义在两个拟互素因子链上的倒数幂GCD矩阵与倒数幂LCM矩阵均是非奇异的. Let S = {x1 ,x2,… ,xn } be a set of n distinct positive integers and a ≥ 0 be a real number. The matrix having the ath power 1/(xi,xj)a as its (i,j) -entry is called reciprocal power greatest common divisor (GCD) matrix defined on S, denoted by (1/Sa). where (xi ,xj )4 = (gcd(xi ,xj ) )a. Similarly we can define reciprocal power LCM matrix [1/Sa] on S. In this paper, the authors first obtain formulaes for the determinants of reciprocal power GCD matrix and reciprocal power LCM matrix defined on S which con- sists of two quasi-coprime divisor chains and gcd(S) E S. Then they show that the reciprocal power GCD matrix and the reciprocal power LCM matrix defined on two quasi-coprime divisor chains S with gcd(S) ∈ S are nonsingular.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期965-969,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10971145) 攀枝花市应用技术研究与开发项目(2012CY-G-26)
关键词 拟互素因子链 最大型因子 倒数幂GCD矩阵 倒数幂LCM矩阵 quasi-coprime divisor chain, greatest-type divisor, reciprocal power GCD matrix, reciprocal power LCM matrix
  • 相关文献

参考文献21

  • 1Bourque K, Ligh S. On GCD and LCM matrices [J]. Linear Algebra Appl, 1992, 174: 65.
  • 2Bourque K, Ligh S. Matrices associated with classes of arithmetical functions [J]. Number Theory, 1993,45: 367.
  • 3Cao W. On Hong's conjecture for power LCM matri- ces [J]. Czechoslovak Math, 2007, 57: 253.
  • 4Hilberdink T. Determinants of multiplicative Toeplitz matrices [J]. Acta Arith, 2006, 125: 265.
  • 5Hong S. LCM matrix on an r-fold ged-closed set [J]. SichuanUniv:NatSciEd(四川大学学报:自然科学版),1996.33:650.
  • 6Hong S. On the Bourque-Ligh conjecture of least common multiple matrices [J]. Algebra, 1999, 218: 216.
  • 7Hong S. Gcd-closed sets and determinants of matri- ces associated with arithmetical functions [J]. Acta Arith, 2002, 101: 321.
  • 8Hong S. Nonsingularity of matrices associated with classes of arithmetical functions [J]. Algebra, 2004, 281 : 1.
  • 9Hong S. Nonsingularity of least common multiple matrices on gcd-closed sets[J].Number Theory, 2005, 113: 1.
  • 10Hong S. Divisibility properties of power GCD ma- trices and power LCM matrices [J]. Linear Algebra Appl, 2008, 428: 1001.

二级参考文献88

  • 1谭千蓉,林宗兵,刘浏.两个互素因子链上的幂GCD矩阵的行列式与幂LCM矩阵的行列式的整除性[J].四川大学学报(自然科学版),2009,46(6):1581-1584. 被引量:6
  • 2Bourque K,Ligh S.On GCD and LCM matrices[J].Linear Algebra Appl,1992,174:65.
  • 3Bourque K,Ligh S.Matrices associated with classes of arithmetical functions[J].Number Theory,1993,45:367.
  • 4Bourque K,Ligh S.Matrices associated with arithmetical functions[J].Linear Multilinear Algebra,1993,34:261.
  • 5Cao W.On Hongs conjecture for power LCM matrices[J].Czechoslovak Math,2007,57:253.
  • 6Codeca P,Nair M.Calculating a determinant associated with multilplicative functions[J].Boll Unione Mat Ital Sez B Artic Ric Mat,2002,5(8):545.
  • 7Feng W,Hong S,Zhao J.Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets[J].Discrete Math,2009,309:2627.
  • 8Haukkanen P,Korkee I.Notes on the divisibility of LCM and GCD matrices[J].International J Math and Math Science,2005,6:925.
  • 9He C,Zhao J.More on divisibility of determinants of LCM matrices on GCD-closed sets[J].Southeast Asian Bull Math,2005,29:887.
  • 10Hilberdink T.Determinants of multiplicative Toeplitz matrices[J].Acta Arith,2006,125:265.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部