期刊文献+

具有经济临界值的非光滑捕食与被捕食系统的全局稳定性分析(英文)

Global Analysis for Non-Smooth Prey-Predator Model with Economic Threshold
原文传递
导出
摘要 只要害虫种群数量在经济临界值水平之上就连续的实施综合控制策略,基于此本文提出了具有经济临界值的非光滑捕食与被捕食系统.我们给出了系统真平衡态、假平衡态和伪平衡态的存在性和稳定性,以及这些平衡态全局稳定或系统存在全局吸引子的条件,同时借助数值方法验证了所得结论.得到的主要结果说明通过采用临界控制策略能让害虫稳定在一个给定的临界值水平上,而达到害虫控制的目的. In present work we have developed a non-smooth prey-predator model with economic threshold,and assume that we only implement the integrated control measures once the density of pest population is larger than the economic threshold. The existence and stability of regular,virtual and pseudo-equilibria are investigated, and some sufficient conditions which guarantee the global stability or global attractor of those equilibria are provided.Further,numerical investigations on non-smooth predator-prey model are carried out to confirm our main results.The results obtained here indicate that we can maintain the density of pest population stabilize at a given threshold level through threshold policy control.
出处 《生物数学学报》 CSCD 2012年第3期413-423,共11页 Journal of Biomathematics
基金 Supported by the National Natural Science Foundation of China(11171199) by the Fundamental Research Funds for the Central Universities (GK201003001)
关键词 非光滑动力系统 捕食-被捕食系统 经济临界值 Lambert W函数 滑动模态 李雅普诺夫函数 Non-smooth dynamical system Predator-prey system Economic threshold Lambert W function Sliding mode Lyapunov function
  • 相关文献

参考文献2

二级参考文献11

  • 1王凤筵,张树文.固定周期脉冲微分方程到状态依赖脉冲的转化及应用[J].生物数学学报,2005,20(2):173-178. 被引量:10
  • 2Bainov D D, Simeonov P S. System with Impulsive Effect:Stability, Theory and Equations[M]. New york:John Wiley & Sons, 1989.
  • 3Drumi bainov P Simeonov. Impulsive Differential Equations: Periodc Solutions and Applications[M] New york: John Wiley & Sons, 1989.
  • 4Abdelkader Lakmeche and Ovide Arino ,BIFURCATION OF NON TRIVIAL PERIODIC SOLUTIONS OF IMPULSIVE DIFFERENTIAL EQUATIONS ARISING CHEMOTHERAPEUTIC TREATMENT,Dynamics of Continuous[J]. Discrete and Impulsive Systems, 2000, 7, 265-287.
  • 5Xinzhi Liu. Stability results for impulsive differential systems with application to population to population growth models[J]. Dynamics and Stability of Systems, 1994, 9(2):163-174.
  • 6Hirstova S G, Bainov D D. Existence of periodic solutions of nonlinear systems of differential equations with impulsive effect[J]. J Math Annl Appl, 1985, 125:192-202.
  • 7Sanyi Tang, Lansun Chen. Density-dependent birth rate,birth pulses and their population dynamic consequences[J]. J Math Biol, 2002, 44, 185-199.
  • 8Sanyi Tang,Yanni Xiao,Lansun Chen,Robert A. Cheke. Integrated pest management models and their dynamical behaviour[J] 2005,Bulletin of Mathematical Biology(1):115~135
  • 9R. M. Corless,G. H. Gonnet,D. E. G. Hare,D. J. Jeffrey,D. E. Knuth. On the LambertW function[J] 1996,Advances in Computational Mathematics(1):329~359
  • 10Thomas D. Rogers,Zhuo-Cheng Yang,Lee-Wah Yip. Complete chaos in a simple epidemiological model[J] 1986,Journal of Mathematical Biology(2):263~268

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部