期刊文献+

增长区域上扩散的Logistic方程解的全局渐近性 被引量:3

Global Asymptotic Behavior of Solutions of Diffusive Logistic Type Equation on a Growing Domain
原文传递
导出
摘要 考虑了一个各向同性增长区域上扩散的Logistic型方程.首先给出了增长区域上的反应扩散模型;然后利用比较原理,通过构造合适的上下解得到了反应扩散问题解的渐近性态;最后给出了数值模拟,以验证理论结果的正确性. In this paper,we consider a diffusive logistic type equation on an isotropically growing domain.The model for growing domains is first presented,and the comparison principle is then obtained.By the construction of upper and lower solutions,the asymptotic behavior of temporal solutions to the reaction-diffusion problem is given.Numerical simulations are performed to verify our theoretical results.
出处 《生物数学学报》 CSCD 2012年第3期471-479,共9页 Journal of Biomathematics
基金 国家自然科学基金(No.11071209) 江苏省研究生创新计划 2012年江苏省高等学校大学生实践创新训练计划项目 南通大学自然科学基金(No.10Z009)
关键词 Logistic型方程 增长区域 渐近性 Logistic type equation Growing domain Asymptotic behavior
  • 相关文献

参考文献19

  • 1Britton N F.Reaction-Diffusion Equations and their Applications to Biology[M].New York:Academic Press, 1986.
  • 2Cantrell R S,Cosner C.Spatial Ecology Via Reaction-Diffusion Equations[M].John Wiley & Sons Ltd, 2003.
  • 3Li H,Muroyab Y,Nakata Y,et al.Global stability of nonautonomous logistic equations with a piecewise constant delay[J].Nonlinear Analysis:Real World Applications,2010,11(3):2115-2126.
  • 4Marcati P.On the global stability of the logistic age-dependent population growth[J].Journal of Mathematical Biology,1982,15(2):215-226.
  • 5Murray J D.Mathematical Biology[M].Berlin and London:Springer-Verlag,1993.
  • 6Pao C V.Nonliear Parabolic and Elliptic Equations[M].New York:Plenum Press,1992.
  • 7Tang X.Global attractivity for logistic equation with instantaneous terms[.I].Nonlinear Analysis,2004, 59(1-2):211-233.
  • 8Yu M,Vaguina.Linear stability of the delay logistic equation[Jj.Applied Mathematics Letters,2004,17(9): 1069-1072.
  • 9刘兴元,夏冬晴,唐爱民.Logistic型时滞泛函微分方程解的渐近性[J].生物数学学报,2009,24(1):57-68. 被引量:1
  • 10Goddard H J,Shivaji R,Lee E K.Diffusive logistic equation with non-linear boundary conditions[J].Journal of Mathematical Analysis and Applications,2011,375(1):365-370.

二级参考文献4

同被引文献11

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部