期刊文献+

Supports of Fourier Transforms of Refinable Frame Functions and Their Applications to FMRA

Supports of Fourier Transforms of Refinable Frame Functions and Their Applications to FMRA
原文传递
导出
摘要 Let M be a d × d expansive matrix, and FL2(Ω) be a reducing subspace of L2(Rd). This paper characterizes bounded measurable sets in Rd which are the supports of Fourier transforms of M-refinable frame functions. As applications, we derive the characterization of bounded measurable sets as the supports of Fourier transforms of FMRA (W-type FMRA) frame scaling functions and MRA (W-type MRA) scaling functions for FL2(Ω), respectively. Some examples are also provided. Let M be a d × d expansive matrix, and FL2(Ω) be a reducing subspace of L2(Rd). This paper characterizes bounded measurable sets in Rd which are the supports of Fourier transforms of M-refinable frame functions. As applications, we derive the characterization of bounded measurable sets as the supports of Fourier transforms of FMRA (W-type FMRA) frame scaling functions and MRA (W-type MRA) scaling functions for FL2(Ω), respectively. Some examples are also provided.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第4期757-768,共12页 应用数学学报(英文版)
基金 Supported by Beijing Natural Science Foundation (No.1122008) the Scientific Research Common Programof Beijing Municipal Commission of Education (No.KM201110005030)
关键词 refinable function frame function refinable frame function refinable function, frame function, refinable frame function
  • 相关文献

参考文献12

  • 1Benedetto, J.J., Li, S. The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal., 5: 389-427 (1998).
  • 2de Boor, C., DeVore, R.A., Ron, A. The structure of finitely generated shift-invariant spaces in //2(Md). J. Fund. Anal, 119: 37-78 (1994).
  • 3Bownik, M. Intersection of dilates of shift-invariant spaces. Proc. Amer. Math. Soc., 137: 56^-572 (2009).
  • 4Chen, D.-R. On the splitting trick and wavelet frame packets. SIAM J. Math. Anal., 31: 726-739 (2000).
  • 5Christensen, O. An Introduction to Frames and Riesz Bases. Birkhauser, Boston, 2003.
  • 6Dai, X., Diao, Y., Gu, Q., Han, D. Frame wavelets in subspaces of L2(Md). Proc. Amer. Math. Soc., 130: 3259-3267 (2002).
  • 7Daubechies, I. Ten lectures on wavelets. Philadelphia, 1992.
  • 8Duffin, R.J., Schaeffer, A.C. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72: 341-366 (1952).
  • 9Lian, Q.-F., Li, Y.-Z. Reducing subspace frame multiresolution analysis and frame wavelets. Commun. Pure Appl Anal., 6: 741-756 (2007).
  • 10Walter, G.G. Translation and dilation invariance in orthogonal wavelet. Appl. Comput. Harmon. Anal., 1: 344-349 (1994).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部