期刊文献+

饱和多孔介质动力学大变形分析耦合对流粒子域插值方法 被引量:1

Coupling convected particle domain interpolation method for dynamic analysis of saturated porous media involving large deformation
下载PDF
导出
摘要 提出了饱和多孔介质大变形动力学响应分析的耦合对流粒子域插值方法(Coupling convectedparticle domain interpolation method,CCPDI)。采用u-p形式的控制方程和超弹性材料本构关系对具有饱和多孔特性的介质进行了大变形动力学模拟,建立了耦合对流粒子域插值方法的弱形式离散求解方程并给出了该方法的计算流程。通过数值算例,验证了所提出的耦合对流粒子域插值方法的正确性。本文工作为生物软组织、肌肉、骨骼和其它一些具有饱和多孔特性的软物质的几何非线性动力学行为分析奠定了基础。 The coupling convected particle domain interpolation method(CCPDI) is proposed for the dynamic analysis of saturated porous media involving large deformation.The u-p form governing equations are adopted for the saturated porous media and a hyperelastic constitutive model is applied to the solid skeleton.The discretization equations are derived in the framework of the generalized interpolation material point method(GIMP).The numerical artifact noises due to material points crossing computational grid boundaries are eliminated by using the convected particle domain interpolation(CPDI) technique.Computational results of several representative examples demonstrate the accuracy and efficiency of the proposed method.These applications indicate that the method can be easily extended to simulate the nonlinear coupling dynamic behaviors of the solid skeleton and fluid phase in soft tissue,bone and other saturated porous soft matter.
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第5期494-500,624,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(11072051 32003 72003 ) 教育部111引智计划项目(B08014) 长江学者和创新团队发展计划 国家重点基础研究发展(973)计划(2010CB832704 CB013401)
关键词 饱和多孔介质 对流粒子域插值方法 动力学分析 大变形 saturated porous media,convected particle domain interpolation,dynamic analysis,large deformation
  • 相关文献

参考文献12

  • 1Li C, Borja R I, Regueiro RA. Dynamics of porous media at finite strain[J]. Comput Methods Appl Mcch Engrg, 2004, 193: 3837-3870.
  • 2Wilson W, Van Donkelaar C C, Huyghe J M. A comparison between cal and biphasic swelling theories for soft JBiomechEngrg, 2005, 127: 158-165.
  • 3Biot M A. General theory of three-dimensional consolidation[J]. J ApplPhys, 1941, 12: 155-164.
  • 4Biot M A. Theory of propagation of elastic waves in fluid saturated porous solid[J]. J AcoustSoeAmerica, 1956, 28: 168-191.
  • 5Lewis R W, Schrefier B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M]. 2nded. NewYork: Wiley, 1998.
  • 6Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution[J]. Int J Numer Anal Meth Geomech, 1984, 8(1): 71-96.
  • 7Prevost J H. Nonlinear transient phenomena in saturated porous media[J]. ComputMethodsApplMechEngrg, 1982, 20: 3-8.
  • 8BelytschkoT, KrougauzY, OrganD, etal. Meshlessmethod. an overview and recent developments[D]. Illinois: Northwestern University, 1996, 139: 3-79.
  • 9张洪武,王鲲鹏,陈震.基于物质点方法饱和多孔介质动力学模拟(Ⅰ)--耦合物质点方法[J].岩土工程学报,2009,31(10):1505-1511. 被引量:13
  • 10Huang P, Zhang X, Ma S, et al. Contact algorithms for the material point method in impact and pvnetration simulation[J]. Int J Numer MethEngng, 2011, 85: 498-517.

二级参考文献3

共引文献12

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部