期刊文献+

理想弹塑性压力敏感性材料中球形孔洞的动态扩展研究 被引量:1

Dynamic expansion of the spherical cavity in the elastic perfectly-plastic pressure sensitive material
下载PDF
导出
摘要 通过椭圆形的屈服方程和自相似假设,结合Hopkins三区模型,研究了理想弹塑性压力敏感性材料中球形孔洞的动态扩展问题,得到了塑性区场量的非线性控制微分方程组。通过弹性区的应力场以及弹塑性边界的塑性屈服条件,给出了塑性区的初值,并应用打靶法给出了问题的数值解。结果表明:与幂硬化材料中的应力场变化不同,理想弹塑性压力敏感性材料中,应力场的变化较小,且基本不受参数孔洞膨胀速度m和压力敏感性参数α1、α2的影响;随到孔边距离的减小,应变明显增大,同时相对密度稍有增大。 The pressure-sensitive material(such as rock) is one kind of materials widely used in the engineering fields,so it owns important engineering meaning to study its mechanical characteristics.The dynamic expansion problem of the spherical cavity in the elastic perfectly-plastic pressure sensitive material is studied based on the elliptic-equation yield criterion,self-similar hypothesis and Hopkins three regions model.The nonlinear differential equations to solve the dynamic expansion problem in the plastic region are firstly derived according to the research of the basic equations.Then the initial values of the plastic field are also gained by the research of the stress fields in the elastic region and the plastic yield condition in the intersection between the elastic and plastic region.Finally,numerical solutions of this problem are obtained by the shooting method.The results obtained indicate that the parameters of the pressure-sensitive material have a small effect on the stress fields while have a great effect on the density and strain fields.
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第5期508-511,625,共4页 Chinese Journal of Applied Mechanics
基金 中央高校基本科研业务费专项资金(HEUCF100209) 哈尔滨工程大学研究生培养基金
关键词 理想弹塑性材料 压力敏感性材料 球形孔洞的扩展 椭圆型屈服准则 elastic perfectly-plastic material,pressure-sensitive material,spherical cavity expansion,elliptic-equation yield criterion
  • 相关文献

参考文献12

  • 1Narasimhan R. Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model[J]. Mech Mater, 2004, 36(7): 633-645.
  • 2Yu H S, Houlsby G T. Finite cavity expansion in dilitant soils: loadinganalysis[Y]. Geotechnique, 1991, 41(2): 173-183.
  • 3Durban D, Fleck N. A spherical cavity expansion in a drucker-prager solid[y]. Journal ofAppliedMechanics, 1997, 64(4): 743-750.
  • 4Durban D. Finite straining of pressurized compressible elastic-plastic tubes[J]. International Journal of Engineering Science, 1988, 26(9): 939-950.
  • 5Durban D, Kubi M. Large strain analysis for plasticorthotropic tubes[J]. IntJSolidsStruct, 1990, 26: 483-495.
  • 6Masri R, Durban D. Quasi-static cylindrical cavity expansion in an elastoplastic compressible Miscs solid[J]. International Journal of Solids and Structures, 2006, 43(25/26): 7518-7533.
  • 7Forrestal M J, Luk V K. Dynamic spherical cavity- expansion in a compressible elastic-plastic solid[J]. J Appl Mcch, 1988, 55(2): 275-279.
  • 8Luk V K, Forrestal M J, Amos D E. Dynamic spherical cavity expansion of strain-hardening materials[J]. J Appl Mech, 1991, 58(1): 1-6.
  • 9Masri R, Durban D. Dynamic spherical cavity expansion in an elastoplastic compressible mises solid[J]. J Appl Mech, 2005, 72(6): 887-898.
  • 10Masri R, Durban D. Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium[J]. Acta Mech, 2006, 181(1/2).- 105-123.

二级参考文献8

  • 1MASRI R, DURBAN D. Quasi -static cylindrical cavity expansion in an elastoplastic compressible Mi- ses solid [ J ]. International Journal of Solids and Structures, 2006,43:7518 -7533.
  • 2WU Guohui, WANG Yong, TANG Liqiang, et al. Cavity dynamic formation and bifurcation of the rubber --like sphere [ J ]. Key Engineering Materials, 2008, 385/387:53 - 56.
  • 3ZAIRI F, NAIT -ABDELAZIZ M, GLOAGUEN J M, et al. Modeling of the elasto - viscoplastic damage be- havior of glassy polymers [ J ]. International Journal of Plasticity, 2008, 24 (6) :945 - 965.
  • 4王自强,黄筑平.细观塑性理论[M].北京:科学出版社,1996.
  • 5FORRESTAL M J, TZOU D Y. A spherical cavity expansion penetration model for concrete targets [ J ]. International Journal of Plasticity, 1998, 14(1/3):173-191.
  • 6MATA M, CASALS O, ALCALA J. The plastic zone size in indentation experiments:The ananlogy with the expansion of a spherical cavity[ J ]. International Journal of Solid and Structures ,2006,43:5994 - 6013.
  • 7SATAPATHY S. Dynamic spherical cavity expansion in brittle ceramics [ J ]. International Journal of Solids and Structures, 2001,38 (32/33) : 5833 - 5845.
  • 8DURBAN D, MASRI R. Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium [ J ]. International Journal of Solids and Structures,2004,41:5697 -5716.

共引文献2

同被引文献25

  • 1覃丽坤,宋玉普,陈浩然,王列东,张众,于长江.双轴拉压混凝土在冻融循环后的力学性能及破坏准则[J].岩石力学与工程学报,2005,24(10):1740-1745. 被引量:27
  • 2蔡吴.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
  • 3廉惠珍.建筑材料物相研究基础[M].北京:清华大学出版社,1996..
  • 4郭成举.混凝土冻害的机制.混凝土与水泥制品,1982,(3):9-19.
  • 5刘西拉,唐光普.现场环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报,2007,26(12):2412-2419. 被引量:41
  • 6POWERS T C, HELMUTH R A. Theory of Volume Changs in Hardened Portland-cement Paste During Freezing [ C ] //Proceedings of the Thirty-second Annual Meeting of the Highway Research Board. Washington, D. C. : Transportation Research Board, 1953 : 285 - 297.
  • 7POWERS T C, WILLIS T F. The Air Requirement ofFrost Resistant Concrete [ C ] // Proceedings of the Twenty-ninth Annual Meeting of the Highway Research Board. Washington, D. C. : Transportation Research Board, 1950:184-211.
  • 8POWERS T C. A Working Hypothesis for Further Studies of Frost Resistance of Concrete J ]. Journal of the American Concrete Institute, 1945, 41 (4) : 245 - 272.
  • 9SETZER M J. Basis of Testing the Freeze-thaw Resistance: Surface and Internal Deterioration [ C ] // Frost Resistance of Concrete. London: [ s. n. ] 1997: 157 - 173.
  • 10SETZER M J. Micro-ice-lens Formation in Porous Solid [ J]. Journal of Colloid and Interface Science, 2001, 243 (1): 193-201.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部