期刊文献+

非Lipschitz条件下的包含下微分算子的带跳倒向随机微分方程(英文)

BSDE WITH JUMPS INVOLVING A SUBDIFFERENTIAL OPERATOR WITH NON-LIPSCHITZ COEFFICIENT
下载PDF
导出
摘要 本文在非Lipschitz系数下,考虑了一类多值的倒向随机微分方程.利用极大单调算子的Yosida估计和倒向随机微分方程在非Lipschitz条件下解的存在唯一性,获得了多值带跳的倒向随机微分方存在唯一解的结论. In this paper, a class of multivalued backward stochastic differential equaitons (MBSDE for short) with non-Lipschitz coefficient is studied. By using a penalization argument based on the Yosida approximation and the existence and uniqueness of solutions to backward stochastic differential equations with jumps under non-Lipschitz condition, we prove the equation has a unique solution.
作者 张孟
出处 《数学杂志》 CSCD 北大核心 2012年第5期816-824,共9页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(10871215)
关键词 带跳的倒向随机微分方程 非lipschitz Yosida估计 下微分算子 BSDE with jumps non-Lipschitz Yosida approximation subdifferential operator
  • 相关文献

参考文献1

二级参考文献6

  • 1Fang Shizan,Zhang Tusheng.A study of a class of stochastic differential equations with nonLipschitzian coemcients[J].Probab.Theory Relat.Fields,2005,132:356-390.
  • 2Mao X R.Exponential stability of stochastic differential equation[M].New York:Marcel Dekker,1994.
  • 3Protter P.Stochastic,integration and differential equations[M].Berlin,Heidelberg,New York:Springer-Verlag,1990.
  • 4Revuz D,Yor M.Continuous martingales and Brownian motion[M].Grun.der Math.Wiss.,Vol.293,Heidelberg:Springer-Verlag,1991.
  • 5Rogers L C G,Williams D.Diffusion,Markov processes and martingales[M].London:Cambridge University Press,2000.
  • 6Ikeda N,Watanabe S.Stochastic differential equations and diffusion processes[M].Amsterdam:North-Holland,1981.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部