期刊文献+

植物缺磷及菌根信号转导网络 被引量:4

Signaling network in phosphate starvation response and arbuscular mycorrhiza symbiosis in plants
下载PDF
导出
摘要 磷是植物生长发育的主要限制因子之一,主要以无机正磷酸盐的形态被植物吸收,而其在土壤中的移动性和生物有效性很低。为了适应磷缺乏的环境,植物进化出了包括与丛枝菌根真菌形成互惠共生体系在内的一系列适应性机制以增强对磷的吸收、转运和再利用等。所有的这些机制均是由复杂而精巧的分子调控网络控制的。近年来众多基因被鉴定并进行功能研究后与该调控网络联系起来,这些基因包括各种蛋白质基因和非编码RNA基因。本文旨在对当前该领域的研究进展作一总结,同时探讨植物缺磷与菌根信号转导途径间可能存在的相互关系。 Phosphorus (P)is one of the major limiting factors for plant growth and development. The accessible form of P to plants is inorganic phosphate (Pi), the mobility and bioavailability of which is fairly low in the soft. In order to counteract the Pi deficient envi- ronment, plants have evolved an array of adaptive strategies, including forming mutualistie symbiotic associations with arbuseular my- corrhiza (AM) fungi, to enhance Pi uptake, translocation, and reutilization. All the strategies are fine tuned by a complex and elaborate molecular regulatory network,in which a large subset of protein-encoding genes and non-coding RNA genes are involved. Here, we review the current advances on this subject, and discuss the potential cross-talk between Pi starvation and AM symbiosis signalings.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2012年第5期133-146,共14页 Journal of Nanjing Agricultural University
基金 国家973计划项目(2011CB100302)
关键词 缺磷反应 丛枝菌根 信号转导 phosphorus phosphate starvation response arbuscular mycorrhiza signal transduction
  • 相关文献

参考文献4

二级参考文献62

  • 1谢卡斌,张建伟,向勇,冯旗,韩斌,储昭晖,王石平,张启发,熊立仲.10828条籼稻全长cDNA的分离和注释[J].中国科学(C辑),2005,35(1):6-12. 被引量:11
  • 2王爱民,陈石燕,沈革志,王新其,鞠丹花,王钟林,王宗阳,蔡秀玲.Ac/Ds(GUS)结构介导的水稻启动子捕获系统的建立[J].植物生理与分子生物学学报,2005,31(6):575-580. 被引量:11
  • 3Peijin Li,Yonghong Wang,Qian Qian,Zhiming Fu,Mei Wang,Dali Zeng,Baohua Li,Xiujie Wang,Jiayang Li.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J].Cell Research,2007,17(5):402-410. 被引量:89
  • 4Aung, K., Lin, S.l., Wu, C.C., Huang, Y.T., Su, C.L., and Chiou, T.J. (2006). pho2, a phosphate overaccumulator, is caused by a non- sense mutation in a microRNA399 target gene. Plant Physiol. 141, 1000-1011.
  • 5Bari, R., Datt Pant, B., Stitt, M., and Scheible, W.R. (2006). PHO2, rnicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141,988-999.
  • 6Beemster, G.T.S., and Baskin, T.I. (1998). Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol. 116, 1515-1526.
  • 7Benjamins, R., Ampudia, C.S., Hooykaas, RJ., and Offringa, R. (2003). PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol. 32, 1623-1630.
  • 8Bernhardt, C., Zhao, M., Gonzalez, A., Lloyd, A., and Schiefelbein, J. (2005). The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development. 132, 291-298.
  • 9Carol, R.J., Takeda, S., Linstead, R, Durrant, M.C., Kakesova, H., Derbyshire, R, Drea, S., Zarsky, V., and Dolan, L. (2005). A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature. 438, 1013-1016.
  • 10Carswell, M.C., Grant, B.R., and Plaxton, W.C. (1997). Disruption of the phosphate-starvation response of oilseed rape suspension cells by the fungicide phosphonate. Planta. 203, 67-74.

共引文献105

同被引文献138

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部