期刊文献+

一种新的血管造影图像Hessian矩阵增强算法 被引量:5

A Novel Hessian Matrix Enhancement Algorithm for Angiography Images
下载PDF
导出
摘要 针对实际血管造影图像存在的噪声和光照不均,本文提出一种新的Hessian矩阵增强算法来提取血管图像。算法主要通过无抽样方向滤波器组进行血管方向图分解、同态滤波器滤波、Hessian特征矩阵和血管方向图合成。实验表明,与传统Hessian算法相比,提出的算法能够连续提取血管的精细结构,对噪声不敏感,处理的图像质量更高。 A novel Hessian matrix algorithm is presented to enhance angiography images considering their noise and non-uniform illumination. The algorithm is performed in four steps..decimation-free directional filter bank decomposing,homomorphic filtering, Hessian eigenvalues matrix, and directional image reconstruction. Experimental results show that the proposed algorithm can detect filamentous image structures continuously,and has great advantages of both noise insensitioity and image visual quality,in comparison to the traditional Hessian algorithms.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第10期104-107,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61172084) 襄樊学院科研项目(2009YA011)
关键词 图像增强 HESSIAN矩阵 分解合成 image enhancement Hessian matrix decomposition and reconstruction
  • 相关文献

参考文献9

  • 1Kirbas C, Quek F. A Review of Vessel Extraction Techniquesand Algorithms[J]. ACM Computer Survey, 2004, 36 ( 2) : 81-121.
  • 2Lesage D, Angelini E D,Bloch I,et al. A Review of 3D Ves-sel Lumen Segmentation Techniques: Models, Features andExtraction Schemes [J]. Medical Image Analysis, 2009,13(6):819-845.
  • 3Poli R,Valli G. An Algorithm for Real-Time Vessel En-hancement and Detection [J]. Computer Methods ProgramsBiomedicine, 1997,52(1) : 1-22.
  • 4Zana F,Klein J-C. Segmentation of Vessel-Like Patterns U-sing Mathematical Morphology and Curvature Evaluation[J]. IEEE Transactions on Image Processing, 2001, 10(2):1010-1019.
  • 5Krissian K. Flux-Based Anisotropic Diffusion Applied to En-hancement of 3-D Angiogram [J]. IEEE Transactions onMedical Imaging, 2002,21 (11); 1440-1442.
  • 6Bamberger R H,Smith M J T. A Filter Bank for the DirectionalDecomposition of Images : Theory and Design[J]. IEEE Transac-tions on Signal Processing, 1992,40(4) :882-893.
  • 7Gonzaies R C,Wintz P. Digital Image Processing[M]. Addi-son-W esiey,Reading ,1987.
  • 8Frangi A,Niessen W, Vincken K, et al. Multiscale VesselEnhancement Filtering[C]// Proc of Medical Image Compu-ting Computer-Assisted Intervention, 1998 : 130-137.
  • 9Shikata H,Hoffman E A, Sonka M. Automated Segmenta-tion of Pulmonary Vascular Tree from 3D CT Images[C]//Proc of SPIE Int Symp on Medical Imaging,2004: 107-116.

同被引文献60

  • 1刘相滨,邹北骥,王胜春.一种新的完全欧氏距离变换算法[J].计算机工程与应用,2005,41(13):44-45. 被引量:13
  • 2陈景航,杨宜民.一种基于Harr小波的快速模板匹配算法[J].计算机工程,2005,31(22):167-168. 被引量:7
  • 3倪青青,王昊.基于一阶和二阶亮度矩不变的图像阈值分割的迭代算法[J].上海师范大学学报(自然科学版),2006,35(3):39-42. 被引量:2
  • 4章秀华,杨坤涛.基于最大熵原则和灰度变换的图像增强[J].光电工程,2007,34(2):84-87. 被引量:7
  • 5张学工.模式识别[M].3版.北京:清华大学出版社,2010.
  • 6LoweD G.Objectrecognitionfromlocalscaleinvariantfeatures [C]//7th International Conference onComputerVision.September20-25,Corfu,Greece.IEEE,1999,2:1150.
  • 7LoweD G.Distinctiveimagefeaturesfromscaleinvariantfeaturepoints[J].IntJComputVision,2004,60:91.
  • 8KeY,Sukthankar R.PCASIFT:a more distinctiverepresentationforlocalimagedescriptors[C]//IEEEComputerSocietyConferenceonComputerVisionandPattern Recognition.June27-July 02,WashingtonDC,USA.IEEE,2004,2:506-513.
  • 9ViolaP,JonesM.Rapidobjectdetectionusingaboostedcascadeofsimplefeatures[C]//Proceedingsofthe2001IEEEComputerSocietyConferenceonComputerVision and Pattern Recognition.December08-14,Kauai,Hawaii.IEEE,2001,1:511-518.
  • 10BayH,EssA,TuytelaarsT.SURF:speededuprobustfeatures[J].Computer Vision & Image Understanding,2008,110(3):346.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部