摘要
网页广告与当前页面内容不匹配使得广告的投放效果降低。本文使用基于站点的贝叶斯模型扩展和基于维基百科的语义扩展两种方法,精确提取网页的标签信息,用更加精确的标签去匹配网络广告,增强了广告效果。本文实现了一个基于语义扩展的网页标签推荐系统,实验证实效果良好。
The mismatch between the web advertisement and the current page leads to worse advertisement effect. In the paper, we use the Bayesian model extension based on site and the semantic extension based on Wikipedia to accurately extract web tag information. We use more accurate tag to match the network advertisement,enhancing the advertisement effect. This paper designs a web tag recommendation system base on semantic extension. The experiments confirm that the effect is good.
出处
《计算机工程与科学》
CSCD
北大核心
2012年第10期145-149,共5页
Computer Engineering & Science
关键词
标签提取
语义扩展
标签推荐
tag extraction
semantic extension
tag recommendation