期刊文献+

基于SVM的中文名词短语指代消解研究 被引量:5

Research of Chinese Noun Phrase Anaphora Resolution:A SVM-based Approach
下载PDF
导出
摘要 指代消解是自然语言处理领域中要研究的关键问题之一。在自然语言中,为了使语言简明,减少冗余,往往对同一意思的单词、句子或某一事件用不同的单词来代替。相对于人而言,计算机理解这些指代现象就比较困难,因此近年来关于指代消解的研究越来越多。由于中文指代消解研究起步较晚,因此关于中文名词短语指代消解的研究还比较少,大多研究是关于英文指代消解的。给出了一个基于SVM的中文名词短语指代消解平台并详细介绍了整个实现过程,语料库采用OntoNotes 3.0的中文新闻语料。利用3种评测算法对系统性能进行了评测,结果表明本系统是一个比较好的中文指代消解平台。 Coreference resolution is an important subtask in natural language processing systems.In natural language,to make the natural language clear and explicit illusions,it is common that two or more words,sentences or events which have the same meaning are replaced by different words.In compare to people,it is difficult to understand these pheno-menon by using the computer,so more and more researchers focus on noun phrases coreference resolution.A great deal of research has been done on this task in English.In Chinese,because the research about coreference resolution starts late,much less work is done in this area.We presented a Chinese noun phrase coreference resolution system based on a SVM approach and gave the details of the platform in the paper.We adopted three tools to evaluate the performance of the platform.Experiments on the Chinese portion of OntoNotes 3.0 show that the platform achieves a good performance.
出处 《计算机科学》 CSCD 北大核心 2012年第10期231-234,共4页 Computer Science
基金 国家自然科学基金(90920004 60970056 61070123 61003153) 江苏省高校自然科学重大基础研究项目(08KJA520002)资助
关键词 指代消解 名词短语 自然语言处理 SVM Coreference resolution Noun phrase Natural language processing SVM
  • 相关文献

参考文献12

  • 1Hobbs J. Resolving pronoun reference[J].Lingua, 1978,44 : 311-338.
  • 2Lappin S, Leass H J. An algorithm for pronominal coreference resolution[J].Computational Linguistics, 1994,20(4) : 535-561.
  • 3Soon W M, Ng H T, Lim D C Y, et al. A machine learning ap-- proach to coreference resolution of noun phrases[J]. Computa-- tional Linguistics, 2001,27(4) : 521-544.
  • 4Ng V,Cardie C. Improving machine learning approaches to core- ference resolution[C]//Proeeedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002,104-111.
  • 5Yang X F, Zhou G D, Su J, et al. Coreference Resolution Using Competition Learning Approach[C]//ACL. 2003 : 176-183.
  • 6Yang X F, Zhou G D, Su J. et al. Improving Noun Phrase Corefe- rence Resolution by Matching Strings[C]//IJCNLP' 2004.
  • 7Kong F,Zhou G D, Zhu Q M. Employing the Centering Theory in Pronoun Resolution from the Semantic Perspective[C]//Pro- ceedings of the 2009 Conference on Empirical Methods in Natu- ral Language Processing. 2009 : 987-996.
  • 8王厚峰,何婷婷.汉语中人称代词的消解研究[J].计算机学报,2001,24(2):136-143. 被引量:36
  • 9王厚峰,梅铮.鲁棒性的汉语人称代词消解[J].软件学报,2005,16(5):700-707. 被引量:36
  • 10李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33

二级参考文献41

  • 1刘志文,郝惠宁,肖友芙,黄曾阳.自然语言语句的HNC表示[J].语言文字应用,1998(2):91-94. 被引量:6
  • 2王厚峰,梅铮.鲁棒性的汉语人称代词消解[J].软件学报,2005,16(5):700-707. 被引量:36
  • 3李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 4Brennan S E,Friedman M W,Pollard C J. A centering approach to pronouns[C] //Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics. Cambridge, Mass, , 1987:290-292
  • 5Aone C,Bermett W W. Evaluating automated and manual acquisition of anaphora resolution strategies[C]//ACL' 1995. 1995 : 122-129
  • 6Grosz A J,Weinstein S. Centering: a framework for modeling the local coherence of discourse [J]. Computational Linguistics, 1995,21(2) :203-225
  • 7Mitkov R. Robust pronoun resolution with limited knowledg. COLING-ACL. Montreal, Canada, 1998 : 869-875
  • 8Kibble R, College G. A Reformulation of Rule 2 of Centering [J]. Computational Linguisties, 2001,27(4) :579-587
  • 9Soon W M,Ng H T,Lim. A machine learning approach to coreference resolution of noun phrase[J].Computational Linguistics, 2001,27(4) : 521-544
  • 10Ng V, Cardie C. Improving machine learning approaches to coreference resolution[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002

共引文献77

同被引文献53

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部