期刊文献+

Local inhomogeneity in totally asymmetric simple exclusion processes with different hopping rates 被引量:1

Local inhomogeneity in totally asymmetric simple exclusion processes with different hopping rates
下载PDF
导出
摘要 Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations. Local inhomogeneity in totally asymmetric simple exclusion processes(TASEPs) with different hopping rates was studied.Many biological and chemical phenomena can be described by these non-equilibrium processes.A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities.It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models.Interestingly,there is a saturation point pair(α*,β*) for the system,which is decided by parameters p and q.There are three stationary phases in the system,when parameter p is fixed(i.e.,p=0.8),with the increase of the parameter q,the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks.The analytical results are in good agreement with simulations.
出处 《Journal of Central South University》 SCIE EI CAS 2012年第10期3012-3016,共5页 中南大学学报(英文版)
基金 Project(2011FZ050) supported by Applied Basic Research Program of Yunnan Provincial Science and Technology Department,China Project(2011J084) supported by Master Program of Yunnan Province Education Department,China
关键词 asymmetric simple exclusion process INHOMOGENEITY hopping rate Monte Carlo simulation approximate theory computer simulation 不均匀性 跳频速率 不对称 计算机模拟计算 非平衡过程 化学现象 近似理论 体积密度
  • 相关文献

参考文献16

  • 1肖松,蔡九菊,刘飞.Zone inhomogeneity with the random asymmetric simple exclusion process in a one-lane system[J].Chinese Physics B,2009,18(11):4613-4621. 被引量:5
  • 2肖松,蔡九菊,王瑞利,刘明哲,刘飞.Theoretical investigation of synchronous totally asymmetric simple exclusion process on lattices with two consecutive junctions in multiple-input-multiple-output traffic system[J].Chinese Physics B,2009,18(12):5103-5110. 被引量:1
  • 3CHOWDHURY D, SCHADSCHNEIDER A, NISHINARI K. Physics of transport and traffic in biology: From molecular motors and cells to organisms [J]. Phys Life Rev, 2005, 2: 318-352.
  • 4LIPOWSKY R, CHAI Y, KLUMPP S, LIEPELT S, MULLER M J I. Molecular motor traffic: From biological nanomachines to macroscopic transport [J]. Physica A, 2006, 372: 34-51.
  • 5STACHOWIAK M R, O'SHAUGHNESSY B. Kinetics of stress fibers [J]. New J Phys, 2008, 10: 025002.
  • 6PETER R, SCHALLER V, ZIEBERT F, ZIMMERMANN W. Instabilities in a two-dimensional polar filament-motor system [J]. New J Phys, 2008, 10: 035002.
  • 7GREULICH P, SCHADSCHNEIDER A. Single-bottleneck approximation for driven lattice gases with disorder and open boundary conditions [J]. J Stat Mech, 2008, 4: P04009.
  • 8SHAW L B, KOLOMEISKY A B, LEE K H. Local inhomogeneity in asymmetric simple exclusion processes with extended objects [J]. J Phys A, 2004, 37: 2105-2113.
  • 9CHOU'T,-- LAKATOS Ct Clustered bottlenecks in mRNA translation and protein synthesis [J]. Phys Rev Lett, 2004, 93(13): 198101.
  • 10KLUMPP S, LIPOWSKY R. Asymmetric simple exclusion processes with diffusive bottlenecks [J]. Phys Rev E, 2004, 70(6): 066104-066113.

二级参考文献40

  • 1Chowdhury D, Schadschneider A and Nishinari K 2005 Phys. of Life Rev. 2 318.
  • 2Lipowsky R, Chai Y, Klumpp S, Liepelt S and Mller M J I 2006 Physica A 372 34.
  • 3Derrida B, Evans M.R, Hakim V and Pasquir V 1993 J. Phys. A 26 1493.
  • 4Schutz G and Domany E 1993 J. Stat. Phys. 72 277.
  • 5Derrida B 1998 Physics Report 301 65.
  • 6Chen R X, Bai K Z and Liu M R 2006 Chin. Phys. 15 1471.
  • 7Huang P H, Kong L J and Liu M R 2002 Chin. Phys. 11 678.
  • 8Shen B and Gao Z Y 2008 Chin. Phys. B 17 3284.
  • 9Janowsky S and Lebowitz J L 1992 Phys. Rev. A 45 618.
  • 10Janowsky S and Lebowitz J L 1994 J. Star. Phys. 77 35.

共引文献4

同被引文献7

  • 1Denidaf B, Evansf M R, Hakimt V., et al. Exact Solution of a 1 D Asym- metric Exclusion Model Using a Matrix Formulation [ J ]. Journal of Physics A, 1993,26 (7) : 1493 - 1517.
  • 2Rajewsky N, Santen L, Schadsehneider A, et al. The Asymmetric Ex- clusion Process : Comparison of Update Procedures[ J]. Journal of Sta- tistical Physies, 1998,92 ( 1 - 2) : 151 - 193.
  • 3蔡中盼.完全非对称排它过程的多道耦合效应研究[D].安徽:中国科学技术大学,2010.
  • 4Schutz G, Domany E. Phase Transitions in an Exactly Soluble One-Di- mensional Exclusion Process[J]. Journal of Statistical Physics,1993, 72( 1 -2) :277 -297.
  • 5Gier J D,Nienhuis B. Exact Stationary State for an Asymmetric Exclu- sion Process with Fully Parallel Dynamics [ J ]. Physical Review E, 1999,59(5 ) :4899 -4910.
  • 6LIU MingZhe,TUO XianGuo,WANG RuiLit,JIANG Rui.Recent developments in totally asymmetric simple exclusion processes with local inhomogeneity[J].Chinese Science Bulletin,2011,56(15):1527-1531. 被引量:2
  • 7刘明哲,李少达,Wang Rui-Li.Asymmetric simple exclusion processes with complex lattice geometries:A review of models and phenomena[J].Chinese Physics B,2012,21(9):12-18. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部