期刊文献+

实体数据库中多相似连接顺序选择策略 被引量:3

Multi-Similarity Join Order Selection in Entity Database
下载PDF
导出
摘要 按照元组描述的实体对其进行组织和查询处理是一种管理劣质数据的有效方法。考虑到同一个实体的同一属性存在多个描述值,因此基于实体的数据库上的连接是支持多个值的相似性连接。由于多表连接操作的连接顺序对连接性能有着重要的影响,研究了实体数据库上多表连接顺序选择方法,采用基于实体的马尔可夫链蒙特卡洛(Markov chain Monte Carol,MCMC)方法估计出实体数据库的相似性连接操作的结果大小,并以连接结果大小和有无索引作为主要代价,提出了基于实体的多连接顺序优化策略。进一步,通过实验证明了估计连接结果大小的算法在大规模数据上有着显著的优势。 To organize and query entities described by relational tuples is an effective way to manage poor-quality data. Taking into account that the attribute of an entity has more than one description, the similarity join based on entity must consider multiple values. Due to importance effect to the join efficiency of multi-join order, this paper proposes a multi-join order selection algorithm which based on Markov chain Monte Carol (MCMC) method to estimate the size of entity similarity join, and raises a cost model to optimize the order of multi-relation of entity on join problem. Moreover, experimental results show that the estimating algorithm has good performance especially when the size of relations is large.
出处 《计算机科学与探索》 CSCD 2012年第10期865-876,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 Nos.61003046 61033015 61133002 国家重点基础研究发展规划(973) No.2010CB316200 高等学校博士学科点专项科研基金 No.20102302120054 中央高校基本科研业务费专项资金 No.2013064 RSE-NSFC交流项目 No.61111130189~~
关键词 多连接 实体 相似连接 马尔可夫链蒙特卡洛(MCMC) multi-relation entity similarity join Markov chain Monte Carol (MCMC)
  • 相关文献

参考文献12

  • 1Chaudhuri S, Ganti V, Kaushik R. A primitive operator for similarity joins in data cleaning[C]//Proceedings of the 22nd International Conference on Data Engineering (ICDE '06). Washington, DC, USA: IEEE Computer Society, 2006: 1-5.
  • 2Dong Xin, Halevy A Y, Yu Cong. Data integration with uncertainty[C]//Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB '07), 2007: 687-698.
  • 3Ji Shengyue, Li Guoliang, Li Chen, et al. Efficient interac- tive fuzzy keyword search[C]//Proceedings of the 18th Inter-national Conference on World Wide Web (WWW '09). New York, NY, USA: ACM, 2009: 371-380.
  • 4Hoad T C, Zobel J. Methods for identifying versioned and plagiarized documents[J]. Journal of the American Society for Information Science and Technology, 2003, 54(3): 203-215.
  • 5Broder A Z, Glassman S C, Manasse M S, et al. Syntactic clustering of the Web[J]. Computer Networks and ISDN Systems, 1997, 29(8): 1157-1166.
  • 6Lee H, Ng R T. Similarity join size estimation using locality sensitive Hashing[J]. Proceedings of the VLDB Endowment, 2011, 4(6): 338-349.
  • 7Lee H, Ng R T. Power-law based estimation of set similarity join size[J]. Proceedings of the VLDB Endowment, 2009, 2 (1): 658-669.
  • 8Wu Y-L, Agrawal D, E1 Abbadi A1. Query estimation by adaptive sampling[C]//Proceedings of the 18th International Conference on Data Engineering (ICDE '02), 2002: 639-648.
  • 9Chaudhuri S, Motwani R, Narasayya V. On random sampling over joins[J]. ACM SIGMOD Record, 1999, 28(2): 263-274.
  • 10Jerrum M, Sinclair A. Approximation algorithms for NP-hard problems[M]. Boston, MA: PWS Publishing Co, 1996: 482-520.

同被引文献3

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部