期刊文献+

收割机作业速度多目标控制模型的鲁棒优化设计 被引量:12

Robust optimal design of multi-objective control model of working speed for combine harvester
下载PDF
导出
摘要 本文围绕稻麦联合收割机作业速度控制策略问题,以收割机作业质量、作业效率、能效利用率为控制目标,基于模型鲁棒优化理论,建立了基于多目标控制的收割机作业速度控制模型;在分析各控制目标约束条件和满足收获损失率、作业效率和能效系数期望区间的基础上,考虑控制目标对田间作业参数变化的灵敏度,提出一种基于模拟退火算法的控制目标权重因子优化方法。田间试验结果表明,当草谷比变化率为40%,谷物密度变化率为29.9%时,本控制模型可将收获损失率控制在0.42%~0.43%范围内,脱粒滚筒功耗15.12~16.99kW,并能实现收割机复杂工作环境下作业速度的合理控制,进一步验证了控制模型的鲁棒性和可行性。 In this paper, the working speed control strategy of combine harvester was studied. Taking harvest loss, harvest efficiency and energy cost as multiply control targets, the multiple targets working speed control model was built based on robust optimization theory. Considering the analysis of the constraint conditions, expected space of control targets and the consideration of sensitivity of control target to the parameter variation, annealing algorithm was proposed to calculate the weighting factor of the control targets and applied to the control parameter of harvest speed. Field testing showed the multiple targets control model can make the grain loss in the range from 0.42%-0.43% and threshing power consumption can be controlled from 15.12 to 17.32 kW when the deviation rate of straw-grain ratio and grain density were 40% and 29.9%. It showed that with this control model rational control of harvest speed can be achieved even under the harsh working condition, and verified the robustness and validity of the control model.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第20期27-33,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家十二五科技支撑项目(2011BAD20B04)
关键词 收割机 鲁棒性 多目标优化 作业速度 模拟退火算法 harvesters, robustness, multiple objective optimization, harvest speed, simulated annealing algorithm
  • 相关文献

参考文献30

  • 1Hiregoudar, Shamnahnnar, Udhaykumar R. et al. Artificial neural network for assessment of grain losses for paddy combine harvester a novel approach[J]. Control, Computation And Information Systems, 2011,140:221 -231.
  • 2Miosz T. Quality of combine-harvester performance as affected by construction of selected thres hing-separating assemblies[J]. Problemy Inzynierii Rolniczej, 1994, 2(4): 23-34.
  • 3Gomez G J, Lopez Lopez L J, Navas Gracia LM. The spatial low-pass filtering as an altemative to interpolation methods in the generation of combine harvester yield maps[J]. Applied Engineering In Agriculture, 2011(6): 1087- 1097.
  • 4潘静,邵陆寿,王轲.水稻联合收割机喂入密度检测方法[J].农业工程学报,2010,26(8):113-116. 被引量:17
  • 5包长春,石瑞珍,马玉泉,刘荣昌,伦翠芬,王庆祝,刘士光.基于ZigBee技术的农业设施测控系统的设计[J].农业工程学报,2007,23(8):160-164. 被引量:95
  • 6姬江涛,王荣先,符丽君.联合收获机喂入量灰色预测模糊PID控制[J].农业机械学报,2008,39(3):63-66. 被引量:31
  • 7易金根,王勇,江向阳.联合收割机的模糊综合评判[J].农业工程学报,2000,31(1):38-39.
  • 8Huisman W, Van Lee J, Heijning J J. Automatic feed rate control of a combine harvester in wheat[J]. Agricultural Engineering, 2004, 34(3): 19-23.
  • 9Kruse J, Krutz G W. Microprocessor based combine ground speed controller[C]// Am. Soc. Agric. Engrs Paper 1982, 12(5): 82-89.
  • 10Chuan Udom, Somchai, Chinsuwan Winit. Threshing unit losses prediction for thai axial flow rice combine harvester[J]. Ama-Agricultural Mechanization In Asia Africa And Latin America, 2009(1): 50- 54.

二级参考文献97

共引文献265

同被引文献190

引证文献12

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部