期刊文献+

基于多智能体交互作用的活动-出行时空分布特性仿真 被引量:4

Simulation of a Multi-agent Interactive Model for Activity-travel Pattern in Time and Space
下载PDF
导出
摘要 在多智能体仿真平台上应用强化学习算法对出行者活动-出行的时间规划与地点选择进行了仿真.由于在模型中引入了道路拥挤程度的实时变化参数,环境能随各智能体的决策动态变化,体现出多个智能体处于相同环境时决策的相互影响与个体和环境的交互作用.仿真结果表明,基于多智能体交互作用方法得出的出行者个体活动模式,群体交通流量分布与弹性活动地点选择均与实际调查结果相符,二者在交通流量峰值的偏差小于5%,在弹性活动地点选择分布的相关度大于90%。 Activity is the source of travel.Temporal-spatial characteristics are important indicators of travelers’ activity features and the causes of congestion.In this paper the authors proposed a multi-agent based reinforcement learning algorithm which could simulate activity time and location choice for travelers.Since road congestion condition was a dynamic parameter in the model,the environment could change dynamically with agent’s behaviors.This reflects interactions among travelers and interactions between travelers and the environment.The result analysis of typical travel patterns,traffic flow distribution and activity location choice show that this algorithm’s simulation could represent actual survey results.The deviation of peak flow is less than 5% while the correlation coefficient of activity location choice is more than 90%.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第10期1530-1535,共6页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(50908052 51008061) 国家'973'计划资助项目(2012CB725402)
关键词 多智能体仿真 强化学习 活动-出行 multi-agent simulation reinforcement learning activity-travel
  • 相关文献

参考文献8

  • 1BOWMAN J L, BEN-AKIVA M. Activity-based disaggregate travel demand model system with activity schedules [ J]. Transportation Research Part A, 2000, 35 (1) : 1-28.
  • 2BHAT C R, SINGH S K. A comprehensive daily activity- travel generation model system for workers [ J ]. Transportation Research Part A, 2000, 34 (1) : 1-22.
  • 3KITAMURA R, PAS E I, LULA C V, et al. Thesequenced activity mobility simulator ( SAMS ) : integrated approach to modeling transportation, land use and air quality [ J]. Transportation, 1996, 23 : 267-291.
  • 4CHARYPAR D, NAGEL K. Q-learning for flexible learning of daily activity plans [ C/CD 1//Travel Behavior. Washington DC: Transportation Research Board, 2005.
  • 5DAVY J, YU L, WETS G, et al. Allocating time and location information to activity-travel patterns through reinforcement learning [ J ]. Knowledge-Based Systems, 2007, 20: 466-477.
  • 6ARENTZE T, TIMMERMANS H. A learning-based transportation oriented simulation system [ J ]. Transportation Research Part B, 2004, 38: 613-633.
  • 7ARENTZE T, TIMMERMANS H. A need-based model of multi-day, multi-person activity generation [ J ]. Transportation Research Part B, 2009, 43: 251-265.
  • 8WATKINS CJCH. Technical Note: Q-learning [ J ]. Machine Learning, 1992, 8: 279-292.

同被引文献46

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部