期刊文献+

应用BP人工神经网络模型预测急性心梗死亡率与气象因素的关系 被引量:5

Application of BP artificial neural network model to predict relationship between meteorological factors and mortality of acute myocardial infarction
原文传递
导出
摘要 目的建立气象因素与急性心梗的智能神经网络预测模型,探索BP神经网络预测模型在气象因素与急性心梗死亡率关系的应用,为哈尔滨地区急性心梗的预防控制措施提供科学依据。方法利用MATLAB7.0软件中的神经网络工具箱及2008年的气象数据建立急性心梗死亡率的反向传播网络(BP神经网络)预报模型。结果经过11次学习和训练,神经网络模型误差为0.00763,达到允许范围内。BP神经网络模型的拟合结果显示,脑出血死亡率MAE为0.18,预测准确度为82.53%。结论 BP人工神经网络具有适应性强,对数据要求不高,自学习能力等突出优点,操作简便且易于掌握和应用。BP人工神经网络模型可以作为哈尔滨市急性心梗死亡预测的一种新方法。 Objective To establish intelligent neural network prediction model of meteorological factors and acute myocardial infarction and explore prediction model of BP neural network in the application of the relationship between meteorological factors and mortality of acute myocardial infarction. To provide the scientific basis for prevention and contrnl of acute myocardial infarction in Harbin region. Methods Using MATLAB7.0 software neural network Toolbox and meteorological data of 2008 to establish forecast model of acute myocardial infarction mortality with back-propagation network (BP neural network). Results After 11 times learning and training, neural network model error was 0.00763, within the allowed range. Fitting of the BP neural network model showed that cerebral hemorrhage mortality MAE was 0.18 per cent, forecasting accuracy was 82.53%. Conclusion BP artificial neural network has strong adaptability, data requirements are not high, prominent advantages such as /earning ability, easy to operate , easy to learn and apply. BP artificial neural network model can be used as a new method for predicting mortality of acute myocardial infarction in our country.
出处 《中国公共卫生管理》 2012年第5期642-644,共3页 Chinese Journal of Public Health Management
基金 黑龙江省卫生厅科研课题:哈尔滨市区居民死亡趋势研究 项目基金编号:2009-544
关键词 BP神经网络 急性心梗 预测 气象 BP neural networks acute myocardial infarction forecast meteorology
  • 相关文献

参考文献10

二级参考文献68

共引文献128

同被引文献52

  • 1熊丹,杨天伦,张琼,陈龙,刘爱忠.青年急性心肌梗死患者的临床特点[J].中南大学学报(医学版),2014,39(4):361-364. 被引量:26
  • 2各类脑血管疾病诊断要点[J].中华神经科杂志,1996,29(6):379-380. 被引量:33022
  • 3李水祥,谢文武.MATLAB语言的神经网络工具箱及应用[J].高等函授学报(自然科学版),2007,20(1):43-46. 被引量:3
  • 4颜虹.医学统计学[M].北京:人民卫生出版社,2010:10-11.
  • 5Mou J, Dawes M, Li Y, et al. Severe hand, foot and mouth dis- ease in Shenzhen, South China: what matters most? [J]. Epide- miol Infect,2014,142(4) :776 - 788.
  • 6Dey P, Lmnba A, Kumari S, et al. Application of an artificial neural network in the prognosis of chronic myeloid leukemia [J]. Anal Quant Cytol Histol,2011,33(6) :335 -339.
  • 7Saylam B, Keskek M, Ocak S, et al. Artificial neural networkanalysis for evaluating cancer risk in multinodular goiter [ J ]. J Res Med Sci ,2013,18 ( 7 ) :554 - 557.
  • 8Chiu HC, Ho TW, Lee KT, et al. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network [ J ]. Scientific World Journal, 2013,4 : 66 - 76.
  • 9Andersson B, Andersson R, Ohlsson M, et al. Prediction of se- vere acute pancreatitis at admission to hospital using artificial neural networks [ J ]. Pancreatology ,2011,11 (3) :328 - 335.
  • 10王玮,李霓,许伟,等.应用BP人工神经网络分析子宫肌瘤危险因素[C].全国肿瘤流行病学和肿瘤病因学学术会议论文集,大连,2007.天津:中国抗癌学会,2007:60-62.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部