期刊文献+

高速自动化细胞机械特性测量系统

A High-speed Automatic System for Measuring the Mechanical Properties of Cells
下载PDF
导出
摘要 细胞机械特性作为一种无标签(Label-free)的生物标记,正得到越来越多的关注.然而现有进行细胞机械特性测量的方法多以手工模式进行,耗时长、效率低下,无法满足生物学统计分析对大批量样品测试的要求.针对该问题,本文在原子力显微镜(Atomic force microscopy,AFM)基础上,建立了一套高速自动化的细胞机械特性测量系统.该系统利用图像处理方法来识别细胞,利用局部扫描来实现AFM针尖和细胞相对位置的精确标定,进而不需要AFM成像就能实现细胞机械特性的连续测定,配合上程序化控制的运动载物平台,可以高速自动化完成大范围区域内细胞机械特性的批量规模化测量.实验结果表明,该系统可以使得细胞机械特性的测量效率提高27倍,从而为Label-free生物标记的批量化测试提供了技术支撑. As a novel effective label-free b!omarker, the mechanical properties of cells have become increasingly important. However, the current methods of mapping the cellular mechanical properties are mostly carried out manually and this results in that the measurements are time consuming, which can not meet the demand of testing a large quantity of cell samples for biological statistical analysis. In this paper, a high-speed automatic system for measuring the mechanical properties of cells based on atomic force microscopy (AFM) is proposed. In this system, cells are recognized using an image processing method and the relative position of the cell with respect to AFM tip is accurately calibrated by the local scan method, i.e., the mechanical properties of cells can be measured sequentially without performing the step of AFM imaging. Besides, with the automation implementation, the high-throughput measurement of cellular mechanical properties can be performed rapidly. Experimental results show that the measurement efficiency of our system is 27 times faster than that of the traditional method.
出处 《自动化学报》 EI CSCD 北大核心 2012年第10期1639-1645,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60904095,61175103) 中国科学院、国家外国专家局创新团队国际合作伙伴计划资助~~
关键词 自动化 细胞机械特性 原子力显微镜 局部扫描 Automation, mechanical properties of ceils, atomic force microscopy (AFM), local scan
  • 相关文献

参考文献17

  • 1Muller D J, DufrSne Y F. Atomic force microscopy as a mul- tifunctional molecular toolbox in nanobiotechnology. Nature Nanotechnology, 2008, 3(5): 261-269.
  • 2Cross S E, Jin Y S, Rao J Y, Gimzewski J K. Nanomechan- ical analysis of cells from cancer patients. Nature Nanotech- nology, 2007, 2(12): 780-783.
  • 3Li Q S, Lee G Y H, Ong C N, Lim C T. AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 2008, 374(4): 609-613.
  • 4Wu H W, Kuhn T, Moy V T. Mechanical properties of 1929 cells measured by atomic force microscopy: effects of an- ticytoskeletal drugs and membrane crosslinking. Scanning, 1998, 20(5): 389-397.
  • 5Li M, Liu L Q, Xi N, Wang Y C, Dong Z L, Tabata O, Xaio X B, Zhang W J. Imaging and measuring the rituximab- induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochemical and Bio- physical Research Communications, 2011, 404(2): 689-694.
  • 6Lee G Y H, Lim C T. Biomechanics approaches to study- ing human diseases. Trends in Biotechnology, 2007, 25(3): 111-118.
  • 7Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force mi- croscopy. Nature Methods, 2008, 5(6): 491-505.
  • 8Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz A Z. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. European Biophysics Journal, 1999, 28(4): 312-316.
  • 9Yim E K F, Darling E M, Kulangara K, Guilak F, Leong K W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of hu- man mesenchymal stem cells. Biomaterials, 2010, 31(6): 1299-1306.
  • 10Cai X F, Yang X X, Cai J Y, Wu S X, Chen Q. X. Atomic force microscope-related study membrane-associated cyto- toxicity in human pterygium fibroblasts induced by mit- omycin C. The Journal of Physical Chemistry B, 2010, 114(11): 3833-3839.

二级参考文献40

  • 1鲁哲学,张志凌,庞代文.原子力显微镜技术及其在细胞生物学中的应用[J].科学通报,2005,50(12):1161-1166. 被引量:8
  • 2Dufrene Y F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc, 2008, 3:1132-1138.
  • 3Franz C M, Puech P H. Atomic force microscopy: A versatile tool for studying cell morphology, adhesion and mechanics. Cell Mole Bioeng, 2008, 1:289-300.
  • 4Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep, 2005, 59:1-152.
  • 5Costa K D. Single-cell elastography: Probing for disease with the atomic force microscope. Dis Markers, 2003, 19:139-154.
  • 6Lekka M, Laidler P. Applicability of AFM in cancer detection. Nat Nanotechnol, 2009, 4:72.
  • 7Stolz M, Raiteri R, Daniels A U, et al. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J, 2004, 86:3269-3283.
  • 8Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton. Nature, 2010, 463:485-492.
  • 9Pelling A E, Li S, Shi W, et al. Nanoscale visualization and characterization of Myxococcus xanthus ceils with atomic force microscopy. Proc Natl Acad Sci USA, 2005, 102:6484-6489.
  • 10Binning G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56:930-933.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部