摘要
所谓图R_n是指具有如下结构的平面图:R_n=(V,E),其中顶点集合V={u_1,u_2,…,u_n}U{v_1,v_2,…,v_n},边集合E={u_iu_(i+1),v_iv_(i+1),u_iv_i,u_iv_(i+1)|i=1,2,…,n},其中u_(n+1)=u_1,v_(n+1)=v_1.通过研究R_n的邻点可区别关联着色,给出了当n=4,n是3或者5的正整数倍时,R_n的邻点可区别关联色数.
The graph Rn is defined byRn = (V, E), V={u1,u2,…,un)∪{v1,V2,…,vn) and E = {uiui+1,vivi+1,uivi,uivi+1│i=1,2,…,n)}, where un+1 = u1, vn+l = v1. By studying the adjacent vertex distinguishing incidence coloring of Rn, we determine the adjacent vertex distinguishing incidence coloring numbers of them, when n = 4, n = 3k or n = 5k ( k is a positive integer).
出处
《数学的实践与认识》
CSCD
北大核心
2012年第19期197-201,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(11101263)
关键词
4-正则平面图
邻点可区别关联着色
邻点可区别关联色数
4-regular planar graph
adjacent vertex distinguishing incidence coloring
adjacent vertex distinguishing incidence coloring number