期刊文献+

一类Minkowski复空间的拟距离和奇异性质 被引量:2

A Class of Quasi-Distance and Singularity of Minkowski Complex Space
原文传递
导出
摘要 双曲虚单位对应一类Minkowski复空间并具有方向异性的特点.四维时空中特殊方向上两时空点间的减法对应类时区与类光区的几何关联,在物理中表示粒子和场的相互作用.通过定义拟(虚)距离使Minkowsk空间的时空映射和间隔不变量进行度量公理化.四维时空中不同方向的距离或度量需要用线度因子和角度因子共同刻画,其中角度因子对应模糊集合,决定了Minkowski度量空间的奇异性质. Hyperbolic imaginary unit is corresponding to the Minkowski complex space, which possesses directional singularity. In four-dimensional space time, the subtraction between two space-time points in special direction corresponds to the geometric cOrrelation between time-like region and light-like region, and itrepresents the interaction between particles and fields in physics. In the article, we make the spatio-temporal mapping and interval invariant axiomatic by defining quasi-distance. In four-dimensional space time, the distance of different directions can be depicted by both dimension factor and angle factor, where angle factor corresponds to fuzzy set, and determines the singularity of Minkowski complex space.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第19期228-233,共6页 Mathematics in Practice and Theory
关键词 MINKOWSKI空间 拟距离 虚距离 角度因子 模糊集合 Minkowski space quasi-distance imaginary distance angle factor fuzzy set
  • 相关文献

参考文献8

  • 1Baylis William E. Clifford (Geometric) Algebra with Applications to Physics, Mathematics and Engineering[M]. Birkhauser,1996.
  • 2Yu Xuegang. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in Applied Clifford Algebras, 1999, 9(1): 109-118.
  • 3于学刚,于学钎.双曲复函与相对论[J].数学物理学报(A辑),1995,15(4):435-441. 被引量:26
  • 4于学刚.双曲复空间的拓扑结构与应用[J].应用泛函分析学报,2000,2(3):271-275. 被引量:2
  • 5Kopczyfiski W. and R. Maszczyk, Spinorial idempotents in the Clifford algebras three-dimensional vector spaces[J]. Advances in Applied Clifford Algebrasl, 1991(1): 85-93.
  • 6Keller J. Spinors as a basis of a geometric super-algebra[J], Advances in Applied Clifford Algebras, 1991, 1(1): 31-50.
  • 7Yu Xuegang. Hyperbolic Hilbert space[J]. Advances in Applied Clifford Algebras, 2000, 10(1): 49-60.
  • 8Freedman M. H. The Topology of Four-dimensional Manifolds[J], Journal of Differential Geometry, 1982, 17(3): 357-453.

二级参考文献7

  • 1于学刚,于学钎.双曲复函与相对论[J].数学物理学报(A辑),1995,15(4):435-441. 被引量:26
  • 2于学刚,第2届国际非线性力学会议论文集,1993年
  • 3熊锡金,泛复变函数理论及其在数学与物理中的应用,1988年
  • 4熊锡金,武汉大学学报,1980年,1卷,1期,16页
  • 5团体著者
  • 6BaylisWillianE.Clifford(geometric)AlgebraswithApplicationstoPhysics,MathematicsandEngineering[M].Birkhauser,1996.
  • 7于学刚.双曲型Lagrangian函数[J].应用数学和力学,1998,19(12):1095-1100. 被引量:12

共引文献25

同被引文献9

  • 1于学刚,于学钎.双曲复函与相对论[J].数学物理学报(A辑),1995,15(4):435-441. 被引量:26
  • 2赵展岳.相对论导引[M]北京:清华大学出版社,2003.
  • 3郑庆璋;崔世治.相对论与时空[M]西安:陕西科学技术出版社,2000.
  • 4Baylis William E. Clifford (Geometric) Algebra with Applications to Physics,Mathematics and Engineering[M].Birkh(a)user,1996.
  • 5于学刚.狭义相对论和量子理论一元化表述[M]北京:科学出版社,2012.
  • 6Yu Xueqian,Huang Qiunan,Yu Xuegang. Clifford algebra and the four-dimensional Lorentz transformation[J].Advances in Applied Clifford Algebras,2002,(01):13-19.
  • 7梁灿彬,曹周键.《从零学相对论》连载①[J].大学物理,2012,31(7):62-65. 被引量:4
  • 8梁灿彬,曹周键.《从零学相对论》连载②[J].大学物理,2012,31(8):63-65. 被引量:2
  • 9梁灿彬,曹周键.《从零学相对论》连载④[J].大学物理,2012,31(10):58-62. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部