期刊文献+

基于斐波纳契数列的自适应DCQGA 被引量:2

Self-Adaptive Double-chain Quantum Genetic Algorithm Based on Fibonacci Sequence
下载PDF
导出
摘要 针对现有双链量子遗传算法的收敛速度慢、稳定鲁棒性差和时间复杂的特点,提出采用斐波纳契数列的自适应双链量子遗传算法。首先,研究了斐波那契数列的特性,建立了斐波那契数列的量子旋转门转角的调整策略;其次,在最优解的搜索过程中,考虑目标函数在搜索点的变化率,建立了随相邻两代的目标函数适应度值变化大小自适应地调节转角步长的方法;应用新算法求解复杂函数的极值优化问题。仿真结果表明,改进算法不仅提高了算法的收敛速度和稳定鲁棒性,而且明显的改善在算法的效率和降低算法的时间复杂度。 A new self-adaptive double-chain quantum genetic algorithm was proposed.Firstly,the rule of updating the rotation angle was constructed based on Fibonacci sequence by studying its properties.Secondly,in the process of searching the optimal solution,the step of rotation angleθ can be adjusted according to the change of objective function values between the parent generation and the child generation.Finally,the new algorithm was used to solve the complex functions with extreme value optimization problem.The simulation results show that the new algorithm can not only improve the convergence rate and stability robustness,but also boost strikingly the efficiency and reduce the time complexity.
出处 《计算机仿真》 CSCD 北大核心 2012年第10期273-278,共6页 Computer Simulation
关键词 斐波那契数列 量子旋转门 时间复杂度 双链量子遗传算法 Fibonacci sequence Quantum rotation gate Time complexity Double-chain quantum genetic algorithm
  • 相关文献

参考文献14

二级参考文献41

  • 1杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32
  • 2杨淑媛,焦李成,刘芳.量子进化算法[J].工程数学学报,2006,23(2):235-246. 被引量:34
  • 3李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 4Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. Proc of the 35th Annual Syrup on Foundations of Computer Science. New York, USA: IEEE Computer Society Press, 1994 : 124-134.
  • 5Grover L K. A fast quantum mechanical algorithm for database search. Proe of the 28th annual ACM Syrup on Theory of Computing. New York, USA: ACM Press, 1996:212-219.
  • 6Narayanan A, Moore M. Quantum inspired genetic algorithm. Proc of IEEE International Conference on Evolutionary Computation. New York, USA: IEEE Press, 1996:61-66.
  • 7Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2002 ; 16 (6) : 580-593.
  • 8Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem. Proc of the 2000 Congress on Evolutionary Computation. New York, USA: IEEE Press, 2000: 1354-1360.
  • 9Yang J A, Li B, Zhuang Z Q. Multi-universe parallel quantum genetic algorithm its application to blind-source separation. Proc of IEEE Int. Conf. on Neural Networks & Signal Processing. New York, USA: IEEE Press, 2003:393-398.
  • 10SHOR P W.Algorithms for quantum computation:discrete logarithms and factoring[C] //Proc of the 35th Annual Symposium on Foundations of Computer Science.Washingtom DC:IEEE Computer Society,1994:124-134.

共引文献234

同被引文献30

  • 1王培义,翟应虎,王克雄,王长东.分形理论及其在地层可钻性预测中的应用[J].石油钻采工艺,2005,27(6):21-23. 被引量:7
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3Han Kuk-Hyun, Kim J H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]//Proc. of Congress on Evolutionary Computation. New York, USA: IEEE Press, 2000: 1354-1360.
  • 4Li Pancbi, Li Shiyiong. Quantum-inspired Evolutionary Algorithm for Continuous Spaces Optimization Based on Bloch Coordinates of Qubits[J]. Neurocomputjng, 2008, 72(1/3): 581-591.
  • 5Zhang Gexiang, Rong Haina. Real-observation Quantum- inspired Evolutionary Algorithm for a Class of Numerical Optimization Problems[C]//Proc. of International Conference on Computational Science. [S. l.]: Springer, 2007: 989-996.
  • 6Yin P Y. Genetic Particle Swarm Optimization for Polygonal Approximation of Digital Curves[J]. Pattern Recognition and Image Analysis, 2006, 16(2): 223-233.
  • 7Ulyanov S V. Quantum Soft Computing in Control Process Design: Quantum Genetic Algorithm and Quantum Neural Network Approaches[C]//Proc. of World Automation Congress IS. 1.]: IEEE Press, 2004: 99-104.
  • 8李士斌,李玮,由洪利,王习武.基于分形理论的岩石可钻性分级方法[J].天然气工业,2007,27(10):63-66. 被引量:12
  • 9HOSEINIE S H, AGHABABAEI H, POURRAHIMIAN Y. Development of a new classification system for assessing of rock mass drillability index ( RDi ) [ J ]. International Journal of Rock Mechanics and Mining Sciences, 2008 (4) :1-10.
  • 10HOSEINIE S H, ATAEI M, OSANLOO M. A new classi- fication system for evaluating rock penetrability[ J]. Inter- national Journal of Rock Mechanics and Mining Sciences, 2009, IE :329-1340.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部