期刊文献+

基于光谱技术的葡萄活体可溶性固体含量在线检测研究 被引量:4

On-site Determination of Grape Soluble Solid Content(SSC) Based on Spectroscopic Technology
下载PDF
导出
摘要 快速检测活体水果内部品质对于确定水果最佳采摘时机和果园信息化管理具有重要意义。以南方棚栽葡萄为研究对象,应用光谱技术对处于生长期的四个葡萄品种的可溶性固体含量(SSC)进行现场测试。分别采用偏最小二乘法(PLS)回归、潜变量人工神经网络(LV-ANN)和潜变量支持向量机(LV-SVM)三种方法为光谱建模集建立了SSC校正模型。用验证集对模型的预测性能进行了评价。与PLS和LV-ANN模型相比,LV-SVM模型的预测性能最佳。实验结果表明,将光谱技术与LV-SVM建模法相结合适用于果园葡萄活体可溶性固体含量无损检测。 The fast detection of inner quality of living fruit is of importance to the selection of optimal harvest time and to the information management of an orchard. The trellised grapes in the southern part of our country are used as the research object. The soluble solid content (SSC) of four kinds of grapes in growth is detected by using a visible and near infrared spectrophotometer on site. The SSC correction models are established by using Partial Least Square regression (PLS) , Latent Variable and Artificial Neural Network (LV-ANN) and Latent Variable and Support Vector Machine (LV-SVM) respectively. The prediction performance of these models is evaluated by using a validation set. Compared with the PLS and LV-ANN models, the LV-SVM model has the best prediction performance. The experimental result shows that the combination of spectroscopy with the LV-SVM modeling is suitable for the nondestructive SSC detection of living grapes in an orchard.
作者 吕刚 杨海清
出处 《红外》 CAS 2012年第10期43-48,共6页 Infrared
关键词 葡萄 可溶性固体含量 在线检测 光谱分析 grape soluble solid content (SSC) in-field determination spectroscopic technology
  • 相关文献

参考文献16

  • 1Kemps B, Leon L, Best S, et al. Assessment of the Quality Parameters in Grapes Using VIS/NIR Spec- troscopy [J]. Biosystems Engineering, 2010, 105: 507-513.
  • 2Shiroma C, Rodriguez S L. Application of NIR and MIR Spectroscopy in Quality Control of Potato Chips [J]. Journal of Food Composition and Analy- s/s, 2009, 22: 596-605.
  • 3Morales S A, Femandez C V, Casanova L, et al. Feasibility of NIR Spectroscopy for Non-destructive Characterization of Table Olive Traits [J]. Journal o[ Food Engineering, 2011, 107: 99-106.
  • 4Rodriguez L E, Fry F S, Mclaughlin M A, et al. Rapid Analysis of Sugars in Fruit Juices by FT-NIR Spectroscopy [J]. Carbohydrate Research, 2001, 336: 63-74.
  • 5Togersen G, Arnesenb J F, Nilsen B N, et al. On-line Prediction of Chemical Composition of Semi-frozen Ground Beef by Non-invasive NIR Spectroscopy [J]. Meat Science, 2003, 63: 515-523.
  • 6Clark C J, Mcglone V A, Silva H N, et al. Prediction of Storage Disorders of Kiwifruit (Actinidia Chinen- sis) Based on Visible-NIR Spectral Characteristicsat Harvest [J]. Postharvest Biology and Technology, 2004-32: 147-158.
  • 7Mcglone V A, Jordan R B, Martinsen P J. Vis/NIR Estimation at Harvest of Pre- and Post-storage Qual- ity Indices for 'Royal Gala' Apple [J]. Postharyest Biology and Technology, 2002, 25: 135-144.
  • 8Li J, Xue L, He X W, et al. Visible and Near In- frared Reflectance Spectroscopy for Determining Sol- uble Solids Content of Navel Orange [C]. Electric In- formation and Control Engineerin, 2011:3780 3786.
  • 9王凤花,朱海龙,戈振扬.近红外光谱数据建模方法的研究进展[J].农业工程,2011,1(1):56-61. 被引量:15
  • 10肖琳,何大卫.PLS回归方法及其医学应用[J].中国卫生统计,2002,19(2):76-79. 被引量:14

二级参考文献69

共引文献1070

同被引文献83

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部