期刊文献+

一类梁方程边值问题正解的存在性 被引量:3

Existence of positive solutions of a type of beam equation boundary value problems
下载PDF
导出
摘要 基于泛函形式的锥拉伸与锥压缩不动点定理,本文获得了一类四阶梁方程边值问题正解的存在性.与已有文献不同的是本文所研究的方程的非线性项依赖于所有低阶导数. This paper addresses the existence of positive solutions for a type of fourth-order beam equation boundary value problems based on function-typed fixed point theorem of cone expansion and compression. The unique characteristic is that its nonlinear term depends on all lower-order derivatives.
作者 吴湘云
出处 《山东科学》 CAS 2012年第5期6-10,共5页 Shandong Science
关键词 四阶边值问题 不动点定理 正解 fourth-order boundary value problem fixed point theorem positive solution
  • 相关文献

参考文献11

  • 1AFFABIZADEH A R. Existence and uniqueness theorems for fourth-order boundary value problems [ J ]. J Math Anal Appl, 1986, 116(2) : 415 -426.
  • 2de COSTER C D, FABRY C, MUNYAMARERE F. Nonresonance conditions for fourth-order nonlinear boundary value problems [J]. Internat J Math & Math Sci, 1994, 17(4) : 725 -740.
  • 3AGARWAL R P. On fourth-order boundary value problems arising in beam analysis [ J ]. Diff Inte Eqns, 1989, 2 ( 1 ) : 91 - 110.
  • 4BAI Z B. The method of lower and upper solutions for a bending of an elastic beam equation [J]. J Math Anal Appl, 2000, 248 (1) : 195 -202.
  • 5EHME J, ELOE P W, HENDERSON J. Upper and lower solution methods for fully nonlinear boundary value problems [ J ]. J Differential Equations, 2001, 180( 1 ) : 51 -64.
  • 6MA R Y, ZHANG J H, FU S M. The method of lower and upper solutions for fourth-order two-point boundary value problems [J]. J Math Anal Appl, 1997, 215(2 ) : 415 -422.
  • 7BAI Z B, WANG H Y. On positive solutions of some nonlinear fourth-order beam equations [J]. J Math Anal Appl, 2002 ,270 (2) : 357 - 368.
  • 8Zhan Bing BAI,Wei Gao GE.Existence of Positive Solutions to Fourth Order Quasilinear Boundary Value Problems[J].Acta Mathematica Sinica,English Series,2006,22(6):1825-1830. 被引量:2
  • 9HANG D, XU Z B. Multiple solutions of some nonlinear fourth-order beam equations [ J ]. Nonlinear Anal TMA, 2008, 68 (12) : 3646 - 3656.
  • 10DU J, CUI M G. Constructive approximation of solution for fourth-order nonlinear boundary value problems [ J]. Math Methods Appl Sci, 2009, 32 (6) : 723 - 737.

二级参考文献2

共引文献1

同被引文献19

  • 1张艳红.含有一阶导数的四阶边值问题的正解[J].苏州大学学报(自然科学版),2012,28(1):7-11. 被引量:2
  • 2Daniel F , Donal 0 , Juan P. Fourth - order Problems with Nonlinear Boundary Conditions [J] . Journal of Computational and AppliedMathematics ,2 0 0 5,174:315.
  • 3Qingliu Yao. Monotonically Iterative Method of Nonlinear Cantilever Beam Equations [J] . Applied Mathematics and Com putation, 2008 ,205 : 432.
  • 4Xiaoping Zhang. Existence and Iteration of Monotone Positive Solutions for an Elastic Beam Equation with a Corner [J] . NonlinearA nalysis: Real World Applications, 2009, 1 0 :2097.
  • 5Alberto Cabada, Ricardo Roque Enguiga. Positive Solutions of Fourth Order Problems with Clamped Beam Boundary Conditions [J] .Nonlinear A nalysis,2011 , 7 4 : 3112.
  • 6Wang K u n , Yang Zhilin. Positive Solutions for a Fourth - Order Boundary Value Problem [J] . Journal of M athem atic, 2 0 1 3 (8 ) : 1.
  • 7To Fu MA. Positive Solutions for a Beam Equation on a Nonlinear Elastic Foundation [J] . Mathematical and Computer Modelling, 2004 ,3 9 : 1195.
  • 8To Fu Ma, Jair da Silva. Iterative Solutions for a Beam Equation with Nonlinear Boundary Conditions of Third Order [J] . AppliedMathematics and Computation ,2004 , 159 : 11.
  • 9Edson A lves, To Fu M a, Maurlcio Luciano Pelicer. Monotone Positive Solutions for a Fourth Order Equation with Nonlinear BoundaryConditions [J] . Nonlinear A nalysis, 2009,71 :3834.
  • 10Li Shunyong , Zhang Xiaoqin. Existence and Uniqueness of Monotone Positive Solutions for an Elastic Beam Equation with NonlinearBoundary Conditions [J] . Computers and Mathematics with Applications ,2012,63 : 1355.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部