期刊文献+

基于改进蚁群算法的集装箱装卸顺序优化研究 被引量:1

Research on improved Ant Colony Algorithm based optimization of container handling sequence problem
下载PDF
导出
摘要 为缩短船舶在港时间,提高码头的作业效率,应用改进蚁群算法对集装箱装卸顺序的组合优化问题进行求解。首先结合柔性作业车间调度理论与集装箱装卸过程中船舶和岸桥的实际情形,建立集装箱装卸顺序调度模型;然后针对基本蚁群算法易出现早熟现象和收敛速度慢等问题,通过动态的改变信息素的挥发度与信息素强度,同时按照改进的信息素更新策略更新各路径的信息素,从而跳出局部最优;最后运用C#.NET语言对基于改进蚁群算法的集装箱装卸顺序问题进行仿真与步骤分析,验证了改进蚁群算法的有效性。实践证明,改进后的蚁群算法基本上克服了传统算法自身的不足,能够对集装箱装卸顺序优化,缩短作业时间。 We apply improved Ant Colony Algorithm to combinatorial optimization problem in order to shorten port waiting time and improve port efficiency. We initially constructed a mathematical model based on flexible job shop scheduling theory and the real situation of the ship and container crane. We then updated the pheromone of every-path based on new updating rule to jump out of its local optimism through dynamically improving pheromone volatility and pheromone intensity. We eventually performed simulation and steps analysis with C#. NET to verify its effectiveness. Experimental results show that it can optimize the sequence of container loading and unloading and shorten operation time
出处 《山东科学》 CAS 2012年第5期92-97,108,共7页 Shandong Science
关键词 改进蚁群算法 集装箱装卸顺序 FJSP 组合优化问题 improved Ant Colony Algorithm container handling sequence FJSP combinatorial optimization problem
  • 相关文献

参考文献11

二级参考文献40

  • 1杜麒栋.中国集装箱港口发展巡礼[J].中国港口,2008(1):8-11. 被引量:1
  • 2叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155
  • 3李开荣,陈宏建,陈崚.一种动态自适应蚁群算法[J].计算机工程与应用,2004,40(29):149-152. 被引量:20
  • 4中国国际货运代理协会.国际海上货运代理理论与实务[M].北京:中国对外经济贸易出版社,2004.
  • 5Vis I F A, de Koster R. Transshipment of containers at a container terminal: An overview [J]. European Journal of Operational Research, 2003,147 (1) : 1-16.
  • 6Bisb E K. A multiple-crane-constrained scheduling problem in a container terminal[ J ]. European Journal of Operational Research, 2003,144( 1 ) : 83-107.
  • 7Kim K H, Park Y M. A crane scheduling method for port container terminals [J]. European Journal of Operational Research, 2004,156 (2) : 752-768.
  • 8Lee D H,Wang H Q, Miao L X. Quay crane scheduling with non-interference constraints in port container terminals [J]. Transportation Research Part E, 2008,44 ( 1 ) : 124-135.
  • 9Misevicius A. An Improved Hybrid Genetic Algorithm: New Results for the Quadratic Assignment Problem [J]. Mathematical Modelling and Analysis, 2003, 14: 497-514.
  • 10Talbi E G, Roux O, Fonlupt C. Parallel Ant Colonies for the Quadratic Assignment Problem [J]. Future Generation Computer Systems, 2001, 17: 441-449.

共引文献101

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部