期刊文献+

二阶锥规划的光滑牛顿算法

A Smoothing Newton Method for Second-order Cone Programming
下载PDF
导出
摘要 基于光滑Fischer-Burmeister函数,给出一个求解二阶锥规划的光滑牛顿算法。算法对于初始点的选取没有任何限制,并且在每一步迭代时只需要求解一个线性方程组,只进行一次线搜索。同时在不满足严格互补的条件下,证明了算法是全局收敛的和局部二次收敛的。数值试验结果表明算法的有效性。 Based on the Fischer-Burmeister smoothing function, a smoothing Newton method is presented for solving the second-order cone programming. The proposed algorithm does not have re- strictions regarding its starting point, and solves only one linear system of equations and performs only one line search at each iteration. Without requiring strict complementarity assumption, the proposed al- gorithm is proved to be globally and locally quadratically convergent under suitable assumptions. Nu- merical results indicate that the algorithm is efficient in practical comnutation.
作者 吴水艳
出处 《咸阳师范学院学报》 2012年第4期14-18,共5页 Journal of Xianyang Normal University
基金 陕西省教育厅科研基金项目(11JK1050)
关键词 二阶锥规划 光滑牛顿法 光滑函数 全局收敛 局部二次收敛 second-order cone programming smoothing Newton method smoothing function global convergence locally quadratically convergent
  • 相关文献

参考文献12

  • 1汤京永,贺国平.一个新的求解二阶锥规划的非内部连续化算法[J].应用数学,2012,25(1):26-31. 被引量:4
  • 2Qi Liqun, Sun Defeng,Zhou Guanglu. A new Iook at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities [J]. Mathematical Programming, 2000, 87: 1-35.
  • 3Fang Liang, He Guoping, Hu Yumhong.A new smoothing Newton-type method for second-order cone programming problems[J].Applied Mathematics and Computation, 2009, 215:1020-1029.
  • 4Clarke F H. Optimization and nonsmooth analysis[M]. New York:Wiley, 1983.
  • 5Qi L. Convergence analysis of some algorithms for solving nonsmooth equations[J].Math Oper Res, 1993, 18(1): 227-244.
  • 6Tseng P. Error bounds and superlinear convergent analysis of some Newton-typemethods in optimization[G]//Pillo G Di, Giannessi F. Nonlinear Optimization and Related Topics. Boston: Kluwer Academic Publishers, 2000: 445-462.
  • 7Chi X N, Liu S Y. A one-step smoothing Newton method for second-order cone programming [J]. Journal of Computational and Applied Mathematics, 2009, 223:114-123.
  • 8Chi X N, Liu S Y. A non-inter continuation method for second-order cone programming [J].Optimization, 2009, 58: 965-979.
  • 9Zhang Xiangsong, Liu Sanyang, Liu Zhenhua. A smoothing method for second order cone complementarity problem [J]. Journal of Computational and Applied Mathematics, 2009, 228:83-91.
  • 10Alizadeh F, Goldfarb D. Second-order cone programming [J].Mathematical Programming, 2003, 95:3-51.

二级参考文献9

  • 1Lobo M S, Vandenberghe L V, Boyd S. Application of the second-order cone programming[J]. Linear Algebra Appl. , 1998 ,284,193-228.
  • 2Alizadeh F,Goldfarb D. Second-order cone programming[J]. Mathematical Programming,2003,95,3-51.
  • 3CHEN Bintong, XIU Naihua. A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions[J]. SIAM Journal on Optimization, 1999,9,605-623.
  • 4QI Liqun, SUN Defeng. Improving the convergence of non-interior point algorithm for nonlinear complementarity problems[J]. Mathematics of Computation, 2000,69,283-304.
  • 5Tseng P. Error hounds and superlinear convergence analysis of some Newton-type methods in optimization[G]//Pillo G Di,Giannessi F. Nonlinear Optimization and Related Topics. Boston: Kluwer Academic Publishers, 2000 : 445-462.
  • 6QI Liqun,SUN Defeng, ZHOU Guanglu. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities[J]. Mathematical Programming, 2000, 87,1-35.
  • 7SUN Defeng, SUN Jie. Strong semismoothness of Fischer-Burmeister SDC and SOC complementarity functions[J]. Mathematical Programming, 2005,103:575-581.
  • 8Fukushima M, LUO Zhiquan, Tseng P. Smoothing functions for second-order-cone complimentarity problems[J]. SIAM Journal on Optimization,2002,12:436-460.
  • 9Clarke F H. Optimization and Nonsmooth Analysis[M]. New York: Wiley, 1983.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部